NOTICE! ALL DRAWINGS ARE LOCATED AT THE END OF THE DOCUMENT #### CLOSURE PLAN BUILDING: 443 NO. 4 FUEL OIL TANK U.S. DEPARTMENT OF ENERGY/ ROCKY PLATS PLANT GOLDEN, COLORADO APRIL 5, 1988 ## ROCKWELL INTERNATIONAL NORTH AMERICAN SPACE OPERATIONS ROCKY FLATS PLANT ADMIN RECORD REVIEWED FOR CLASSIFICATION/UCMI BY LITERASY UNIT DOOD 1/4/22 Vol. XVIII #### CLOSURE PLAN #### BUILDING 443 NO. 4 FUEL OIL TANK U.S. DEPARTMENT OF ENERGY ROCKY FLATS PLANT GOLDEN, COLORADO APRIL 5, 1988 Rockwell International North American Space Operations Rocky Flats Plant P.O. Box 464 Golden, Colorado 80402-0464 Roy F. Weston, Inc. 215 Union Boulevard Suite 600 Lakewood, Colorado 80228 Chen & Associates, Inc. 96 South Zuni Street Denver, Colorado 80223 Prepared for the U.S. Department of Energy DA LA LA PARAMENTON/UCHI #### TABLE OF CONTENTS | 1.0 | INTRODUCTION | 1 | |-----|---|----------------------------| | 1.1 | Description of the Rocky Flats Plant 1.1.1 Location and Operator 1.1.2 Mission | 1
1
3 | | | 1.1.3 Brief History | 4 | | 1.2 | Description of the Building 443 No. 4 Fuel Oil Tank 1.2.1 Introduction 1.2.2 Location of Tank Area 1.2.3 Type and Size of Tank 1.2.4 Total Tank Storage Capacity 1.2.5 Types of Wastes Stored in Tank 1.2.6 Monitoring and Containment Systems 1.2.7 Releases 1.2.8 Lines from the Tank | 6
6
7
10
10 | | | 1.2.6 Monitoring and Containment Systems | 15
15 | | | 1.2.7 Releases 1 2 8 Lines from the Tank | 17 | | • | 1.2.9 Geologic Setting | 19 | | 1.3 | Maximum Waste Inventory | 23 | | 1.4 | Description of Auxiliary Equipment | 24 | | 1.5 | Closure Plan Summary 1.5.1 Closure Objectives 1.5.2 Closure Plan 1.5.3 Closure Schedule 1.5.4 Justification for Extension of Schedule | 25
25
25
32
34 | | 1.6 | Administration of Closure Plan | 39 | | 1.7 | Closure Cost Estimates and Financial Assurance | 40 | | 2.0 | REMOVAL, TREATMENT AND DISPOSAL OF WASTE FROM TANK AND LINES | 42 | | 2.1 | Introduction | 42 | | 2.2 | Maximum Amount of Remaining Waste | 42 | | 2.3 | Procedures for Handling Remaining Waste 2.3.1 Waste Characterization 2.3.2 Waste Management | 42
43
44 | | 2.4 | Schedule for Residual Waste Removal, Treatment and Disposal | 45 | |-----|--|----------------------------------| | 3.0 | DECONTAMINATION OF THE TANK SYSTEM | 46 | | 3.1 | Introduction | 46 | | 3.2 | Characterization of Adjacent Soils 3.2.1 Soil Characterization Prior to Tank | 47 | | | System Removal 3.2.2 Soil Characterization During Tank System Removal | 48
60 | | 3.3 | Removal of the Tank System and Contaminated Soils 3.3.1 Tanks and Soil Removal Procedures 3.3.2 Tank Decontamination and Disposal | 63 | | | Procedures 3.3.3 Tank and Soil Packaging and Disposal 3.3.4 Additional Activities 3.3.5 Access Control 3.3.6 Dust Control 3.3.7 Health and Safety Plan | 63
65
67
68
68
69 | | 3.4 | Ground Water 3.4.1 Summary of Applicable Requirements 3.4.2 Ground-Water Quality 3.4.3 Ground-Water Protection Standard | 70
70
71
79 | | 4.0 | DECONTAMINATION OF EQUIPMENT | 81 | | 4.1 | Introduction | 81 | | 4.2 | Decontamination Procedures | 81 | | 4.3 | Auxiliary Equipment | 83 | | 4.4 | Construction Equipment Used During Closure | 83 | | 5.0 | GROUND-WATER MONITORING | 84 | | 6.0 | CLOSURE CERTIFICATION | 85 | | 6.1 | Certification Requirements | 25 | CO7890010526 Date: April 5, 1988 Revision No.: 1 | 6.2 Activities Requiring Inspections by a
Registered Professional Engineer | 85 | |---|------| | 6.3 Anticipated Schedule of Inspections by a
Registered Professional Engineer | 86 | | 7.0 SITE SECURITY | 88 | | REFERENCES | | | APPENDIX 1 - LABORATORY TEST RESULTS - BUILDING 443 NO. 4 FUEL OIL TANK AND ASSOCIATED WASTES | | | APPENDIX 2 - SAMPLING METHODS FOR WASTE CHARACTERIZATION | ИС | | APPENDIX 3 - ANALYTICAL METHODS FOR WASTE CHARACTERIZA | rion | | APPENDIX 4 - QUALITY ASSURANCE/QUALITY CONTROL FOR WAS CHARACTERIZATION | ΓE | | APPENDIX 5 - DRILLING AND SOIL SAMPLING PROCEDURES | | | APPENDIX 6 - QUALITY ASSURANCE/QUALITY CONTROL FOR SOIL CHARACTERIZATION | L | | APPENDIX 7 - OPERATIONAL SAFETY ANALYSIS (OSA) FOR SOIL REMOVAL | | #### LIST OF FIGURES | Figure | 1 | - | Vicinity Map | 2 | |--------|----|-----|---|----| | Figure | 2 | - | Map of the Controlled Area of the Rocky Flats Plant | 8 | | Figure | 3 | - | Location Map | 9 | | Figure | 4 | - | Piping Associated with the No. 4 Tank | 18 | | Figure | 5 | - | Cross-Section Location Map | 20 | | Figure | 6 | - | Cross-Section A-A' | 21 | | Figure | 7 | - | Closure Plan Activity Flow Diagram for Soils | 26 | | Figure | 8 | - | Activity Flow Diagram for Ground Water | 27 | | Figure | 9 | - | Schedule of Building 443 No. 4 Fuel Oil Tank Closure Activities | 33 | | Figure | 10 |) - | - Locations of Exploratory Borings | 50 | | Figure | 11 | | - Location of the Point of Compliance | 72 | C07890010526 Date: April 5, 1988 Revision No.: 1 #### LIST OF TABLES | Table | I - Summary of On-Site Laboratory Analyses
of Samples Obtained March 7, 1986 | 12 | |-------|--|----| | Table | II - Summary of Off-Site Laboratory Analyses
of Samples Obtained March 7, 1986 | 14 | | Table | III - Cost Estimates for Closure Activities
of the No. 4 Fuel Oil Tank and for
Tank-Related Upgrades to Building 443 | 41 | | Table | IV - Parameters Selected for Laboratory
Analyses and Allowable Concentrations
for a "Clean" Soil Closure | 54 | | Table | V - Acceptable Soil Concentrations for
Selected Parameters | 59 | | Table | VI - Summary of Ground-Water Data from Well 44-86 | 73 | CO7890010526 Date: April 5, 1988 Revision No.: 1 #### 1.0 INTRODUCTION #### 1.1 Description of the Rocky Flats Plant #### 1.1.1 Location and Operator The U.S. Department of Energy's Rocky Flats Plant is located in north-central Colorado, northwest of the City of Denver (Figure 1). The Plant is located in Sections 1 through 4 and 9 through 15 of T. 2 S., R. 70 W. The facility's EPA identification number is CO7890010526. The mailing address is: U.S. Department of Energy Rocky Flats Plant P.O. Box 928 Golden, Colorado 80402 The facility contact is: Albert E. Whiteman, Area Manager Phone: (303) 966-2025 The facility covers approximately 6,550 acres of federally owned land in northern Jefferson County, Colorado, which is centered at 105° 11' 30" west longitude, 39° 53' 30" north latitude. The facility is approximately 16 miles northwest of Denver and 9 to 12 miles from the neighboring communities APPROXIMATE SCALE 1"=3,300' 6 017 86 | Chen & Associates VICINITY MAP Fig. 1. Date: April 5, 1988 Revision No.: 1 of Boulder, Broomfield, Golden and Arvada. It is bounded on the north by State Highway 128, on the west by a parcel of land east of State Highway 93, on the south by a parcel of land north of State Highway 72 and on the east by Jefferson County Highway 17. Access to the plant is from an east access road exiting from Jefferson County Highway 17 and a west access road exiting from State Highway 93. The facility is situated at an elevation of approximately 6,000 feet. It is on the eastern edge of a geological bench known locally as Rocky Flats. The bench is approximately 5 miles wide and flanks the eastern edge of the foothills of the Rocky Mountains. #### 1.1.2 Mission The Rocky Flats Plant is a government-owned and contractoroperated facility. It is part of a nationwide nuclear weapons research, development and production complex administered by the Albuquerque Operations Office of the U.S. Department of Energy (DOE). The prime operating contractor for the Rocky Flats Plant is Aerospace Operations of Rockwell International. The facility produces metal components for nuclear weapons; therefore, its product is directly related to national defense. The facility fabricates components from plutonium, uranium, beryllium and stainless steel. Other production activities include chemical recovery and purification of recyclable transuranic radionuclides, metal fabrication and assembly and related quality control functions. Other activities include research and development in metallurgy, machining, non-destructive testing, coatings, remote engineering, chemistry and physics. Parts at the plant are shipped elsewhere for final assembly (U.S. Department of Energy, 1987a). #### 1.1.3 Brief History Construction of the Rocky Flats Plant was approved by the U.S. Government in 1951 as an addition to the nation's nuclear weapons production complex. Operations began in 1952 under direction of the Atomic Energy Commission. The original facility covered an area of approximately 2,520 acres (Figure 1). A buffer zone was added in 1974-1975 to enlarge the plant to its present size of approximately 6,550 acres. The buffer zone had been used for grazing cattle and horses and is enclosed within a cattle fence which is posted with signs indicating restricted access. Two office buildings, a warehouse, firebreaks, holding ponds along three water courses, environmental monitoring instrumentation, a sanitary landfill area, a salvage yard, power lines, inactive gravel pits, clay pits and two target ranges are located in the buffer zone. Additionally, a former wind energy test site now used as an office building and a Ground Wave Emergency Network (GWEN) tower being installed by the U.S. Air Force are located in
the buffer zone. Major facility structures are located in a 400-acre controlled area near the center of the property. Production, research and development facilities at the plant are located in the controlled area which contains approximately 134 structures with a combined floor space of approximately 2.67 million square feet. #### 1.2 Description of the Building 443 No. 4 Fuel Oil Tank #### 1.2.1 Introduction This closure plan has been prepared for the Building 443 No. 4 fuel oil tank. The Building 443 No. 4 fuel oil tank is one of four tanks that historically supplied #6 fuel oil to the Building 443 steam plant. The fuel oil was used as a backup for natural gas which is the steam plant's normal fuel. The steam is used for heating buildings at the Rocky Flats facility. Two of the four tanks were installed in 1952. The two remaining tanks, including the No. 4 tank, were installed in 1967. From 1967 till 1984, the No. 4 tank was used to store fuel oil. In 1984, its use was changed and it began storing a water and oil waste mixture. The source of the waste mixture was from air compressors that had recently been installed in Building 443. Used solvents from Building 443 activities were also stored in the No. 4 tank. These solvents qualify as listed hazardous wastes from non-specific sources. Therefore, the No. 4 tank is regulated by the Resource Conservation and Recovery Act (RCRA). In March 1986, fence post holes were excavated in the vicinity of the Building 443 tanks. One hole, located approximately six inches east of the eastern edge of the No. 4 tank, partially filled with a material visually identified as compressor oil. The hole was approximately four feet deep and contained approximately six inches of the material (Shirk, 1988). Subsequent to this observation, use of the No. 4 tank ceased. The tank contents were removed by Oil and Solvent Process Company (OSCO) and were thermally destroyed. The tank's contents were removed in three loads between April 23 and May 2, 1986. Approximately 12,900 gallons of material were removed at that time (Hayden, 1988). The tank has not been used since that time. #### 1.2.2 Location of Tank Area The four fuel oil tanks are located approximately 25 feet east of Building 443. The location of Building 443 with respect to the controlled area of the Rocky Flats Plant is shown on Figure 2. The locations of the four fuel oil tanks with respect to Building 443 are shown on Figure 3. Each tank is oriented longitudinally east to west. The tanks are located in a line running north to south. The No. 1 tank is 6 017 86 **Chen & Associates** LOCATION MAP Fig. 3 the northernmost tank and the No. 4 tank is the southernmost tank (Shirk, 1986 and U.S. Atomic Energy Commission, 1952). #### 1.2.3 Type and Size of Tank The No. 4 fuel oil tank is made of carbon steel and is 11 feet in diameter and 27 feet in length (U.S. Atomic Energy Commission, 1952). The top of the tank is approximately four feet below grade. #### 1.2.4 Total Tank Storage Capacity The total storage capacity of the No. 4 tank is approximately 19,000 gallons. #### 1.2.5 Types of Wastes Stored in Tank The No. 4 tank was primarily used during its operating life to store #6 fuel oil. The tank was used one time in the 1970's to store #2 diesel oil. In 1984, air compressors were installed at the steam plant. The compressors generated a water/compressor oil mixture of approximately nine parts water to one part oil at the rate of up to approximately 30 gallons per day, depending upon ambient CO7890010526 Date: April 5, 1988 Revision No.: 1 humidity. The mixture was temporarily stored in the tank prior to its disposal. The No. 4 tank was used continuously in this manner until the summer of 1986. While awaiting disposal, solvents used in Building 443 to clean-up fuel oil spills and to clean equipment were also added to the No. 4 tank. The solvents were added to the tank after their use by pouring them through a vertical pipe located at the east end of the tank. Approximately 55 gallons of solvents have historically been used in Building 443 every two years. This rate of usage corresponds to the approximate quantity of solvents added to the No. 4 tank from 1967 till 1986. The solvents were added to the tank after their usage. There was no set schedule of when the solvents were added. These solvents were not added to any of the other tanks (Shirk, 1988). On March 7, 1986, an excavation for a fence post hole near the No. 4 tank was found to fill with a liquid that appeared to be compressor oil. Samples of this liquid and of material stored in the No. 4 tank were obtained and submitted to both an on-site laboratory and an independent laboratory for analyses. Results of the analyses are presented in Appendix 1. Table I summarizes the limited #### TABLE I ### SUMMARY OF ON-SITE LABORATORY ANALYSES OF SAMPLES OBTAINED MARCH 7, 1986 (ROCKWELL, 1986c) | Constituent | Oil Phase-
No. 4 Fuel
Oil Tank | Water Phase-
No. 4 Fuel
Oil Tank | |-----------------------------------|--------------------------------------|---| | 1,1,1-
Trichloroethane,
ppm | 58.0+20
65.0 <u>+</u> 20(1) | 10.7+20
27.5+20(1) | | Trichloroethylene, | 0,0(1) | Trace ⁽²⁾ ,
25 <u>+</u> 20 ⁽¹⁾ , | #### Notes: - (1) Results of two samples obtained. (2) Trace = >10 ppb CO7890010526 Date: April 5, 1988 Revision No.: 1 results from the on-site laboratory. Table II summarizes the results from the off-site laboratory, which conducted a complete volatile organic scan of all samples submitted for analyses. Only the compounds detected by the off-site laboratory in one or more samples are presented in Table II. The sample designations on Tables I and II correspond with those given when the samples were obtained and analyzed in 1986. These sample designations were maintained for consistency. "Oil Phase - No. 4 Fuel Oil Tank" and "Water Phase - No. 4 Fuel Oil Tank" indicate samples from the oil phase and water phase, respectively, of the materials that were in the No. 4 fuel oil tank in March, 1986. "Compressor Oil" designates a sample of a material visually identified to be compressor oil that was taken from a fence post hole excavated near the No. 4 fuel oil tank. The results of these analyses indicate the volatile organic compounds 1,1,1-trichloroethane (TCA); trichloroethylene (TCE); methylene chloride (MeCl); and trichlorofluoromethane were found in materials stored in the No. 4 tank. These analyses indicate the used solvents stored in this tank would be defined as listed hazardous wastes from non-specific sources, with industry and EPA hazardous waste TABLE II # SUMMARY OF OFF-SITE LABORATORY ANALYSES OF SAMPLES OBTAINED MARCH 7, 1986 (ROCKWELL, 1986c) | Constituent (1) | Oil
Phase-
No. 4
Fuel
Oil Tank | Water
Phase-
No. 4
Fuel
Oil Tank | Compressor ⁽¹⁾ | |--------------------------------|--|--|---------------------------| | Methylene
Chloride, mg/l | 140 | 25 | 14 | | Trichloro- fluoromethane, mg/l | <5 | 17 | 29 | | 1,1,1- Trichloroethane, mg/l | 17,000 | 40 | 32 | #### Note: (1) Sample taken from a fence post hole near the No. 4 fuel oil tank. CO7890010526 Date: April 5, 1988 Revision No.: 1 numbers F001 or F002. TCA, MeCl, and trichlorofluoromethane were found in the sample obtained from the fence post hole. These data suggest the No. 4 tank was the source of the volatile organics found in the fence post hole. #### 1.2.6 Monitoring and Containment Systems A tank level indicator is the only monitoring component associated with the No. 4 tank. There have not been any recorded drops of the level of materials stored in the tank, which would indicate releases from the tank itself may not have occurred. There is no outer containment system for the tank (Shirk, 1986 and U.S. Atomic Energy Commission, 1952). #### 1.2.7 Releases There have been no documented releases from the No. 4 fuel oil tank (Shirk, 1986). The following presents information regarding releases in the area of the four #6 fuel oil tanks. In about 1967 and 1968, #6 fuel oil spills were reported. The releases were traced to overfilling the supply tanks because level switches were installed in the wrong tanks. The amount of material released is unknown. In November 1977, approximately 600 gallons of #6 fuel oil were recovered from the sewage treatment plant. The source of this material was traced to a cracked transfer pipe in an underground pipeline near the No. 4 tank. The oil was leaking out of the pipe, traveling through the pipe backfill and bedding materials, and eventually seeped into a sump in Building 443 that was connected to the sewage treatment plant. The total amount of material released is unknown. The pipe was repaired, and oil-contaminated soil encountered in the excavation sent to the Rocky Flats sanitary landfill for disposal. A material visually identified as compressor oil was detected in one fence post hole drilled on March 7, 1986, near the four fuel oil tanks. The total amount of oil released is unknown. The source of this material is believed to be spills associated with filling and possible leakage from the No. 4 fuel oil tank. This is supported by the fact that there have been occurrences of ground water entering the tank from a leak on the top of the tank. There have been no decreases in the level in the tank, only increases due to water moving in (Shirk, 1988). Following observation of the material in the fence post hole, a trench approximately three feet wide, four feet deep and 100 feet long was excavated east of the four Building 443 fuel oil tanks. The western edge of the trench was located approximately three to four feet east of the eastern edges of the tanks. No free product was found in the trench. The southern 30 feet of the trench, immediately east of the No. 4 tank, showed visual evidence of dark
fuel oil stains on the soils. These stains are believed to be due to past minor spills and known leakage events from previously discussed spills (Shirk, 1988). #### 1.2.8 Lines from the Tank Four steel supply and return lines run from each of the four tanks to Building 443 (Figure 4). One line is a steam line to supply the heaters located inside each tank. A second line is a return condensation line from the heaters. A third line is a pump line for fuel oil pumped from the tanks to the building. The fourth line is a return line for oil being circulated from the building to the tank after additional heating. The four lines from the No. 4 tank are extensions of the lines that tie into the Nos. 1 through 3 tanks. One aboveground pipeline runs from the two supply tanks south of Building 551 to the four tanks. The portion of the line that directly feeds the No. 4 tank is a 3-inch diameter underground steel pipe (Shirk, 1986). #### 1.2.9 Geologic Setting The location of a cross section in the vicinity of the Building 443 No. 4 fuel oil tank is shown on Figure 5. The cross section, shown on Figure 6, illustrates the geologic setting. Surficial deposits in this area consist of approximately 20 feet of Rocky Flats Alluvium and lesser amounts of colluvium, which overlie claystone bedrock of the Arapahoe Formation. The Rocky Flats Alluvium caps the upland areas while colluvium blanket the Woman Creek Drainage. April 5, 1988 Revision No.: 1 The Rocky Flats Alluvium consists of poorly to moderately sorted clay, silt, sand, gravel and cobbles which were deposited in a series of laterally coalescing alluvial fans (Hurr, 1976). The thickness of the alluvium is variable due to deposition on an erosional surface and recent erosional processes. Colluvial materials consisting predominantly of clay with common occurrences of sandy clay and gravel layers are present on the surface of the Woman Creek Drainage. These materials were deposited by slope wash and down slope creep of Rocky Flats Alluvium and claystone bedrock. Ground water in the Rocky Flats Alluvium and other surficial materials on the plant site occur under unconfined conditions. This shallow ground-water flow system is quite dynamic with average depths to water ranging from four to 14 feet below the ground surface. Ground-water flow generally follows the topography and is also governed by the configuration of the top of bedrock beneath the surficial materials. Generally, the shallow ground-water flow system direction is eastward from the plant. The Arapahoe Formation consists of fluvial claystones with interbedded sandstones and siltstones. Weathering has penetrated to depths ranging from 10 to 40 feet below the base of the surficial deposits. Ground water generally occurs within lenticular sandstone bodies contained within the claystones of the Arapahoe Formation. #### 1.3 Maximum Waste Inventory A closure plan must include "an estimate of the maximum inventory of wastes in storage or in treatment at any time during the life of the facility" [6 CCR 1007-3, 265.112(a)(2)]. The estimate of the tank's maximum inventory should "always be high enough to ensure that if an inspector came onto the facility, the amount of inventory would not exceed the estimate in the plan, assuming normal operating conditions" (U.S. Environmental Protection Agency, 1981). The inventory should include "the tank's contents and any inventory in other forms of storage directly associated with the tank [e.g., wastes requiring storage and/or treatment in the tank]" (U.S. Environmental Protection Agency, 1981). Date: April 5, 1988 Revision No.: 1 The intent of 6 CCR 1007-3 Section 265.112(a)(2), as clarified by the U.S. Environmental Protection Agency, 1981, and as applicable to this facility is to provide an estimate of the maximum waste inventory from this date until closure. The Building 443 No. 4 fuel oil tank was emptied in the summer of 1986 and is no longer in use. It is anticipated a minor amount of sludge may remain at the bottom of the tank and associated lines. The exact amount of material remaining in the tank is unknown at this time, but will be determined during closure activities. #### 1.4 Description of Auxiliary Equipment The auxiliary equipment associated with the No. 4 fuel oil tank consists of a centrifugal pump connected to the tank and lines and a heater located inside the tank. C07890010526 Date: April 5, 1988 Revision No.: 1 #### 1.5 Closure Plan Summary #### 1.5.1 Closure Objectives This closure plan has been prepared to meet the closure performance standard of 6 CCR 1007-3 Section 265.111. The promulgated standard requires that a facility must be closed in a manner that: - . minimizes the need for further maintenance, and - controls, minimizes or eliminates, to the extent necessary to protect human health and the environment, post-closure escape of hazardous waste, hazardous waste constituents, leachate, contaminated rainfall, or waste decomposition products to the ground or surface waters or to the atmosphere. #### 1.5.2 Closure Plan The activities necessary to complete closure and to comply with applicable requirements of 6 CCR 1007-3, Section 264 Subpart F are shown on the diagrams on Figures 7 and 8. The activities in the closure plan related to the tank, lines and soil include: - determining if there are any remaining wastes in the tank, and characterizing and disposing of these wastes, - characterizing the soils adjacent to the tanks and lines to determine if they are "clean," **Chen & Associates** ACTIVITY FLOW DIAGRAM FOR GROUND WATER - excavating the tank and lines, - . removing and disposing of the tank and lines off-site, - removing and disposing off-site any excavated soil that is "contaminated," and - replacing excavated areas with replacement tanks and clean fill. The activities required to evaluate the impact of the No. 4 tank on ground-water quality will be conducted as discussed in Section 3.4. For information purposes, a diagram showing the basic activities that may be necessary to evaluate ground-water quality is presented on Figure 8. The closure activities described in this plan are based on the information presented in Sections 1.2 through 1.4. The closure method described herein is based upon all currently available information. Therefore, when soil samples and analyses have been completed, the adequacy of the plan will be reevaluated, and, if necessary, a revised closure plan will be submitted within 30 days after determining a revised closure plan is necessary. It is currently believed that a "clean" closure can be implemented at the No. 4 tank by excavating and removing any soil that is determined to be contaminated, as defined in Section 3.2. The ground-water quality data obtained to date, presented in Section 3.4, indicates the ground water in the vicinity of the No. 4 tank has not been impacted by the contents of the tank or any release from the tank. If soil contamination exceeds the estimated volume of hazardous waste contaminated soil, presented in Section 1.7, by an order of magnitude or if hazardous waste contaminated soil appears to extend beneath buildings, closing the tank as a land disposal unit will be required. In this case, revised closure and post-closure plans will be submitted, within 30 days after determining revisions are required, to the Colorado Department of Health (CDH) for approval. For reasons unrelated to hazardous waste storage in the No. 4 tank, the other three tanks immediately east of Building 443 are also scheduled for removal. These tanks will be replaced with two inspectable tanks placed in a below-grade inspectable vault and covered with a concrete slab. Therefore, the other three tanks will be removed during removal of the No. 4 tank, its associated lines, and any contaminated soils, as defined in Section 3.2. Additionally, although not part of this closure plan, any soils that are not contaminated, as defined in Section 3.2, but that are contaminated with fuel oil from any of the four tanks, will also be removed and disposed of off-site at a facility approved for disposal of petroleum contaminated soils. Until removal, the other three fuel oil tanks will comply in all respects with RCRA Subtitle I requirements. The first phase of the closure activities consists of determining if any wastes are present in the tank. If wastes are present, they will be sampled, characterized and disposed of at an approved off-site disposal facility. Characterization of adjacent soils will then be conducted. The Building 443 No. 4 fuel oil tank and the five associated lines, to the point where the lines join lines from Tanks 1 through 3, will be removed and disposed of at an approved off-site disposal facility. The extent of piping to be removed under this closure plan and the approximate extent of the excavation required for removal of this tank and its associated lines are shown on Figure 4. Approximately 2,800 cubic yards of soil are anticipated to be removed from the area of the four storage tanks. It is anticipated that 700 cubic yards of soil may be contaminated with hazardous materials and 2,100 cubic yards of soil may be contaminated with petroleum products only. This total volume estimate is based on an estimated volume of backfill extending ten feet beyond the edges of all of the tanks. Backfill materials are typically of higher hydraulic conductivity than the Rocky Flats Alluvium. Therefore, contaminants generally migrate preferentially in the backfill materials. This is supported by the November 1977 fuel oil line break discussed in Section 1.2.7. The above estimates of soil volumes to be removed will be revised based upon soil characterization activities to be completed as part of the closure activities. If soil contamination is extensive and removal of soils could adversely affect structures in the area, then alternative closure methods will be evaluated and a revised closure plan will be submitted. This revised plan
will meet the requirements of 6 CCR 1007-3, Section 265.197(b), which requires post-closure care and maintenance for tanks as for a land disposal unit, under Section 265.310. If adjacent soils are not contaminated, as defined in Section 3.2, but are contaminated with oil possibly associated with Tanks 1 through 3, then the soils will be handled to meet the CDH's, EPA's and the U.S. DOE's requirements. These soils will be removed at the time the No. 4 tank is removed. Management and disposal of the excavated soil will vary depending on the materials with which the soils are contaminated. # 1.5.3 Closure Schedule The closure schedule presented below is based on the Facility Capability Assurance Program (FCAP) funding schedule. This FCAP funding will be used to both complete closure of the Building 443 No. 4 fuel oil tank and to remove and replace the Nos. 1 through 3 fuel oil tanks. The proposed schedule for FCAP specifies upgrades to Building 443, including the fuel oil tank work, will be undertaken between October 1991 and November 1992. Within this time frame, detailed design work for all of the Building 443 upgrades will begin in October 1991 and work on the tanks will be conducted in October 1992. The estimated time required for closure activities is shown on Figure 9. As shown on the figure, excavation, removal and off-site disposal of the tank, lines and contaminated soils, if any exist, will be conducted from 900 days to 1,260 days after approval of the closure plan. Date: April 5, 1988 Revision No.: 1 All liquid contents of the tank were removed in late April - early May 1986, but residual sludge may still be present in the tank. These sludges will be observed, characterized, and removed and the soil will be partially or fully characterized prior to approval of the closure plan by the CDH. Complete records of all activities conducted between the current time and approval of the closure plan will be maintained by the U.S. DOE. Additional activities conducted by the U.S. DOE, such as removal of soils contaminated with fuel oil only, but that are not considered contaminated, as defined in Section 3.2; removal of the remaining three tanks; replacement of the tanks with two new tanks; and construction of the concrete slab; are not required by this closure plan and will be discussed only in general terms. #### 1.5.4 Justification for Extension of Schedule 6 CCR 1007-3, Section 265.113(b) states, in part, that closure activities will be completed within 180 days after approval of the closure plan unless closure activities will, by necessity, take longer than 180 days to complete. If closure activities will take longer than 180 days, then steps must be taken to prevent threats to human health and the environment from the unclosed facility. The schedule for closure activities exceeds the time required by the regulations. An extended closure schedule is justified for the reasons itemized below. - . The tank's liquid contents were removed in 1986, prior to closure plan approval, removing any source of continuing release. - Characterization of the ground water from downgradient well 44-86 and of the material encountered in the fence post hole does not indicate there is an imminent threat to human health and the environment. - . The numerous and extensive environmentally-related activities ongoing at the Rocky Flats Plant dictate the need for extended schedules at the lower priority units. - . Actions have been and will continue to be taken to protect human health and the environment. Threats to human health and the environment are prevented by the routine monitoring activities conducted at Rocky Flats, and by restricted access to the facility. Specific details of the routine monitoring program are summarized in the "Annual Environmental Monitoring Report" (Rockwell, 1986a). This document is reviewed and updated on an annual basis. Brief discussions of the monitoring activities that are conducted and the security procedures at the plant are presented below. The routine environmental monitoring program includes the sampling and analysis of airborne effluents, ambient air, surface and ground water, and soil. External penetrating gamma radiation exposures are also measured using thermoluminescent dosimeters. Samples are collected from on-site, boundary and off-site locations. Particulate and tritium sampling of building exhaust systems is conducted continuously. For immediate detection of abnormal conditions, ventilation systems that service areas containing plutonium are equipped with Selective Alpha Air Monitors. These monitors trigger an alarm automatically if out-of-tolerance conditions are experienced. Particulate samples of ambient air are collected from ambient air samplers operated continuously on site. The ambient air samples are analyzed for Total Long-Lived (TLL) Alpha activity or for plutonium activity. There are currently 51 of these ambient air samplers. Twenty-three are located within and adjacent to the Rocky Flats exclusion area, 14 are located along or near the plant's perimeter, and 14 are located in nearby communities. The majority of the water used at the RFP for plant process operations and sanitary purposes is treated and evaporated and/or reused for cooling tower makeup or steam plant use. The discharge of water off-site is minimized to the greatest extent possible. Water discharges from the Rocky Flats Plant are monitored for compliance with appropriate CDH standards and EPA National Pollutant Discharge Elimination System (NPDES) permit limitations. Surface runoff from precipitation is collected in surface water control ponds and discharged off site after monitoring. Routine water monitoring is conducted for two downstream reservoirs and for drinking water sources in nine communities. Groundwater monitoring was conducted during 1987 at approximately 160 ground-water sampling locations. Soil samples were collected during 1987 from 40 sites located on radii from Rocky Flats at distances of 1.6 and 3.2 kilometers (1 and 2 miles). The purpose of this soil CO7890010526 Date: April 5, 1988 Revision No.: 1 sampling is to determine if there are any changes in plutonium concentrations in the soil around the plant. When higher concentrations than usual are found in any of the routine monitoring activities, or when out-of-compliance conditions are identified, the cause of the problem is investigated. If the Building 443 No. 4 fuel oil tank is found to be the cause of an out-of-compliance condition, then this closure plan will be revised within 30 days. # Access to the plant is limited by: - a three-strand barbed wire cattle fence surrounding the facility (Figure 1) posted to identify the land as a government reservation/ restricted area, - a fence surrounding and guards posted 24 hours per day at two gates to the controlled area of the facility (Figure 1), - a 6-foot high chain link fence topped by 2 feet of three-strand barbed wire surrounding and guards posted 24 hours per day at gates to the perimeter security zone (PSZ), - guards patrolling the controlled area and the PSZ 24 hours per day, and - . surveillance by security cameras 24 hours per day. The existing fences and gates are operated and maintained by the U.S. Department of Energy. The monitoring and security measures outlined above are designed to protect human health and the environment by threats posed by the RFP as a whole. More specifically, they protect human health and the environment from threats posed by the Building 443 No. 4 fuel oil tank. # 1.6 Administration of Closure Plan The closure plan for the Building 443 No. 4 fuel oil tank will be kept at the Rocky Flats Area Office, Building 111, U.S. Department of Energy. The person responsible for storing and updating this copy of the closure plan is: Mr. Albert E. Whiteman Area Manager His address and phone number are: U.S. Department of Energy Rocky Flats Plant P.O. Box 928 Golden, Colorado 80402 Phone: (303) 966-2025 Mr. Whiteman is also responsible for updating other copies of the closure plan held off-site by sending additions or revisions by registered mail. April 5, 1988 Revision No.: 1 # 1.7 Closure Cost Estimates and Financial Assurance State and Federal governments are exempt from the financial requirements imposed by Subpart H of 6 CCR 1007-3, Section 265.140(c). Because the Rocky Flats Plant is a federallyowned facility, no cost estimates or financial assurance documentation are required. However, cost estimates are presented in Table III for planning, budgeting and informational purposes. These estimates can in no way be considered binding. The total cost of upgrades to Building 443 is anticipated to be \$3,300,000, excluding disposal of soil. Including soil disposal costs, the total anticipated cost of upgrades to Building 443 is \$3,550,000. Soil disposal costs assume one-quarter of the excavated soil will require disposal as a hazardous waste and this soil will meet all land ban requirements (Federal Register, 1986) for landfilling. # TABLE III # COST ESTIMATES FOR CLOSURE ACTIVITIES OF THE NO. 4 FUEL OIL TANK AND FOR TANK-RELATED UPGRADES TO BUILDING 443 | Activity | | Estimated Cost | |---|-------|----------------| | Removal and disposal of: Petroleum affected soil (2,100 c.y.) Hazardous waste contaminated soil | | \$ 62,300 | | (700 c.y.) | | 189,600 | | Direct costs of tanks and equipment | | 263,000 | | Mark-ups | | 61,900 | | Overhead, profit, bond | | 73,200 | | Escalation | | 61,900 | | Engineering design and inspection | | 26,300 | | Contingency | | 90,100 | | | Total | \$828,300 | CO7890010526 Date: Date: April 5, 1988 Revision No.: 1 2.0 REMOVAL, TREATMENT AND DISPOSAL OF WASTE FROM TANK AND LINES # 2.1 Introduction This section of the closure plan responds to 6 CCR 1007-3, Section 265.112(a)(2) through (4) by providing the following information: - . Estimates of the
maximum inventory of wastes expected during the closure period. - Discussion of the volumes, removal methods, treatment procedures and disposal plans for any wastes or residues encountered. - . Time schedules for closure activities. # 2.2 Maximum Amount of Remaining Waste The Building 443 No. 4 fuel oil tank was emptied of all liquids in the summer of 1986. However, minor amounts of sludges may remain in the tank and associated lines. The amount of sludge remaining, if any, is currently unknown. # 2.3 Procedures for Handling Remaining Waste Characterization and volume estimates of any waste remaining in the No. 4 tank will be made prior to excavating the tank. If any wastes remain, they will be removed and placed in temporary storage on-site to reduce the potential for accidental spillage from the tank while the wastes are being characterized. Based on the waste characterization, an appropriate off-site facility will be identified for waste disposal. #### 2.3.1 Waste Characterization The waste characterization will meet the requirements of 6 CCR 1007-3, Section 265.13(a)(1). The characterization will include an estimate of the volume of the waste and a chemical and physical analysis of the waste in order to treat and dispose of the waste. A visual estimate of the waste volume will be made prior to excavation to the top of the tank and lines. One representative sample of the waste will be obtained from the tank. The sampling methods, analytical methods, and quality assurance/quality control procedures to be followed are presented in Appendix C-2, Section C-5, and Section C-7 of the Waste Characteristics and Analysis Plan, Section C, of the RCRA Part B Permit Application (U.S. Department of CO7890010526 Date: April 5, 1988 Revision No.: 1 of Energy, 1987a). These sections are reproduced in Appendices 2 through 4, respectively, of this closure plan. The following parameters will be used to classify the waste's chemical characteristics for off-site disposal: - . TCA; - . TCE; - . MeCl; - . Trichlorofluoromethane; - Benzene, toluene, ethylbenzene; - . Ignitability; and - . Oil and grease. These compounds were selected due to their presence in one or more of the materials sampled in March 1986, as discussed in Section 1.2.5, or because they are typical constituents for characterization and disposal of petroleum contaminated wastes. Additional parameters may be added as appropriate for characterization or disposal. #### 2.3.2 Waste Management Upon completion of the waste characterization, the information obtained will be used to select a treatment and disposal procedure. Based on the types of materials known to have been stored in the tank, as discussed in Section 1.2.5, it is anticipated any wastes remaining will classify as a hazardous waste. Hazardous wastes at the Rocky Flats Plant that contain oils and solvents are typically commercially recycled or disposed of off-site, depending on the percent of solvents present (Hayden, 1988). It is currently anticipated that remaining wastes would be recycled or disposed of by Oil and Solvent Process Company (OSCO). # 2.4 Schedule for Residual Waste Removal, Treatment and Disposal The schedule for residual waste characterization and disposition is discussed in Section 1.5.3. # 3.0 DECONTAMINATION OF THE TANK SYSTEM #### 3.1 Introduction At closure of a tank system, all waste residues, contaminated containment system components, contaminated soils, and structures and equipment contaminated with waste must be removed or decontaminated, as specified in 6 CCR 1007-3, Section 265.197(a). Sampling and analyses programs will be conducted prior to tank excavation and removal to evaluate the extent of soil contamination. Additional soil sampling and analyses will be conducted in phases if the initial results indicate soil contamination is present. Following soil characterization, the No. 4 tank and associated lines will be removed and disposed of as part of closure activities. Additional soil sampling and analyses will be conducted during tank removal to confirm the extent of required soil removal. Based on the results of the field and laboratory investigations, if the tank and associated lines are removed and the adjacent soils are not contaminated, no further closure activities or post-closure maintenance and monitoring are required for the soils. If portions of the C07890010526 Date: April 5, 1988 Revision No.: 1 adjacent soils are contaminated, they will be removed and disposed of off-site. If all contaminated soils are removed, further closure activities or post-closure maintenance and monitoring will not be required for soils. If the adjacent soils are contaminated but cannot be practically removed, the area will be closed as a land disposal unit. If this occurs, the closure plan will be amended to include the necessary closure activities. Characterization of the soils adjacent to the tank system is discussed in Section 3.2. Removal of the tank system and contaminated soils are discussed in Section 3.3. Groundwater quality evaluation and ground-water corrective action are discussed in Section 3.4. # 3.2 Characterization of Adjacent Soils The soils adjacent to the tank system will be characterized prior to and during removal of the tank system. Characterization during tank system removal will be conducted to confirm the extent of required soil removal. The characterization program to be conducted prior to tank removal will include drilling and sampling exploratory borings. The characterization program during tank excavation will include sampling without the use of exploratory borings. # 3.2.1 Soil Characterization Prior to Tank System Removal Soil characterization prior to tank system removal will consist of one or more phases of drilling, sampling and analyses. If the first phase indicates the sampled soils are uncontaminated, no further drilling will be conducted. However, if the first phase indicates contaminated soils are present, additional soil sampling phases will be conducted. No further phases will be conducted when the last phase indicates the extent of soil contamination has been defined. This section discusses the locations, number and depths of borings; drilling procedures; sampling procedures; laboratory analyses procedures; and procedures for quality assurance/quality control (QA/QC) for the first phase. If required, additional phases will be designed based on the previously obtained results. The drilling, sampling, laboratory analyses and QA/QC procedures outlined below will be applicable for additional phases. # Locations, Number and Depths of Borings Four borings will be drilled around the perimeter of the No. 4 tank. The locations of these borings are shown on Figure 10. This configuration provides uniform coverage around the tank since potential leakage areas cannot be defined at this time. The borings will extend to ten feet below the ground-water table or to a maximum depth of 30 feet, whichever comes first. Based on hydrogeologic characterization, the depth to ground water is anticipated to be approximately 15 to 20 feet below the ground surface. Continuous sample collection will be conducted. Drilling, sampling, and analysis procedures to be used are discussed below. If laboratory analyses indicate soils contaminated with hazardous waste are present, additional drilling, sampling and analyses will be conducted. Additional borings will be placed approximately three feet beyond the borings shown on Figure 10. If necessary, multiple drilling phases will be conducted by locating new borings an additional three feet away from the tank, until the extent of hazardous contamination is defined, or until the edges of Building 443 or the No. 3 tank are reached, whichever comes first. 6 017 86 Chen & Associates LOCATIONS OF EXPLORATORY BORINGS Fig. 10 # Drilling Procedures The borings will be drilled with hollow stem augers where practical. Boulders in the surficial materials may prohibit the use of hollow stem auger, in which case alternate drilling methods, such as tricone rotary, will be used. The boring diameter will be a minimum of 4 inches. The borings will be backfilled with grout upon completion. Cuttings from the borings will be placed in barrels and held on-site temporarily until characterization of the soil samples is completed. If necessary, the cuttings will be packaged and disposed of at an approved off-site disposal facility. The use of hollow stem augers eliminates the need for drilling fluids; however, some organic free water may be used if hole stability is a problem (Rockwell, 1986b). #### Sampling Procedures Continuous samples from the borings will be taken with either split tube samplers or split spoon samplers from every one-foot interval. Auger or rotary cuttings will be saved if adequate samples cannot be obtained with the split tube or split spoon samplers for laboratory analyses. The samples obtained will be placed in jars and placed on ice in coolers. The samples designated for analyses will be delivered to a laboratory for analyses as soon as possible. Two field screening procedures will be used to select laboratory samples and for later qualitative correlation with laboratory analyses. The procedures are: - . a visual survey, and - a portable gas chromatograph survey. One sample from each 5-foot interval will be submitted for laboratory analyses, even if field screening procedures do not indicate the necessity to obtain a sample. <u>Visual Survey</u>: The visual survey will be conducted to visually identify areas that are potentially contaminated. Gas Chromatograph Survey: The portable gas chromatograph (GC) survey will be conducted to determine the potential presence of TCA and TCE. The portable GC will be used by performing a head-space analysis in the field on soil samples (Clark, 19??; Spittler, 1980; Spittler, 19??a; and Spittler, 19??b). These substances were selected for field screening due to their presence in either the
material in Date: April 5, 1988 Revision No.: 1 the No. 4 tank or the compressor oil sampled from the fence post hole. A portable GC reading of greater than 0.05 ppm (Spittler, 19??b) for either of the two substances will be used to identify potentially contaminated soil. Detailed procedures for drilling and soil sampling are provided in Appendix A of the CEARP, Phase 2: Rocky Flats Plant, IGMP (U.S. Department of Energy, 1987b) and are reproduced in Appendix 5 of this closure plan. # Laboratory Analyses: The samples selected from the borings for laboratory analyses will be tested for the parameters listed in Table IV. Table IV also presents the contaminant concentration levels which, if exceeded, will cause the soils to be classified as contaminated. This definition of contaminated is used throughout this closure plan, unless contamination with fuel oil is specified. Plutonium (Pu) and uranium (U) are not expected to be indicative of any materials associated with the No. 4 tank, but are included in the list of indicator parameters due to the nature of operations of the Rocky Flats Plant. In addition to these parameters, the samples will be tested for ignitability. CO7890010526 Date: April 5, 1988 Revision No.: 1 #### TABLE IV PARAMETERS SELECTED FOR LABORATORY ANALYSES AND ALLOWABLE CONCENTRATIONS FOR "CLEAN" SOIL CLOSURE | <u>Parameter</u> | Allowable Concentration | |------------------------|-------------------------| | TCA | 0.2 ppm | | TCE | 0.005 ppm | | MeCl | 0.005 ppm | | Trichlorofluoromethane | 0.010 ppm | | Pu | 20 pCi/qm | | U | 320 pCi/gm | <u>TCA</u>: TCA is a non-carcinogenic, toxic compound. The risk to human health induced by ingestion of 0.6 mg/l (ppm) of TCA is below a 1 x 10^{-6} health risk. The recommended maximum contaminant level (RMCL) of TCA in drinking water is 0.20 ppm, and the concentration of TCA in the land disposal ban is 0.41 ppm (Settig, 1985). Based on this information, a limit of 0.2 ppm was selected for TCA in soil based on the RMCL for TCA in drinking water. TCE: TCE is a carcinogenic, toxic compound. An additional lifetime cancer risk of 1 in 100,000 is posed by injesting a concentration of 0.027 ppm. The proposed maximum contaminant level (MCL) in drinking water is 0.005 ppm, and the concentration of TCE in the land disposal ban is 0.091 ppm (Settig, 1985). Based on this information, a limit of 0.005 ppm was selected for TCE in soil based on the proposed MCL for TCE in drinking water. This level is the Certified Lab Protocol (CLP) low soil/sediment Contract Required Detection Limit (CRDL) for this compound. If this CRDL is not achievable due to analytical interference, then the medium soil/sediment CRDL will be used which is 100 times the low soil/sediment CRDL. MeCl: MeCl is a non-toxic, carcinogenic compound. An additional lifetime cancer risk of 1 in 100,000 results at an ingestion level of 0.0019 ppm. The concentration of MeCl in the land disposal ban is 0.96 ppm. No RMCLs or MCLs have been set or proposed. However, the permissible concentrations in water to protect human health preferably is zero (Settig, 1985). Based on this information, the CLP low soil/sediment CRDL of 0.005 ppm was selected for MeCl. If the low soil/sediment CRDL is not attainable, then the medium soil/sediment CRDL of 100 times the low soil/sediment CRDL will be used. Trichlorofluoromethane: Trichlorofluoromethane is a non-toxic, non-carcinogenic compound. No RMCLs or MCLs have been set or proposed, and this compound is not on the Hazardous Substance List (HSL). However, the permissible concentration in water to protect human health is preferably zero (Settig, 1985). Since trichlorofluoromethane is not on the HSL, no CRDL exists for this compound. There are other halogenated methanes on the HSL list. Therefore, the detection limit for trichlorofluoromethane has been set based on the low soil/sediment CRDL for chloromethane and bromomethane of 0.010 ppm. If the low soil/sediment CRDL is not attainable, then the medium soil/sediment CRDL of 100 times the low soil/sediment CRDL will be used. <u>Pu</u>: As explained previously, plutonium is not expected to be indicative of any materials associated with the No. 4 tank. However, samples will be analyzed for this parameter and allowable concentrations must be presented. The U.S. EPA, in consultation with other federal agencies, has developed interim recommendations to be used for protection of public health in areas where significant contamination by Pu and other transuranium elements exist. The recommendations are intended to provide long-term radiation protection for all exposed persons in a "critical segment of the general population" and specify that both the individual and collective radiation doses should be "as-lowas-reasonably-achievable (ALARA)." These interim recommendations present a soil screening level of 0.2 microcuries of transuranics per square meter in the upper 1 cm of soil. this represents a combined inhalation and ingestion risk of 1 x 10^{-6} . At activity levels greater than this, additional evaluation is recommended to determine the actual dose rates to exposed persons (U.S. Environmental Protection Agency, 1986). Assuming a soil density of 1 gm/cm³, this activity level translates to 20 picocuries per gram (pCi/gm) of soil. This limit will be applied to plutonium should it be found at the No. 4 tank area. \underline{U} : As explained previously, uranium is not expected to be indicative of any materials associated with the No. 4 tank. However, samples will be analyzed for this parameter and allowable concentrations must be presented. The International Committee of Radiological Protection presents an acceptable standard of 100 millirems (mrem) of effective dose equivalent per year of exposure for long-term exposure for radionuclides from man-made sources (ICRP, 1977). The National Council on Radiological Protection (NCRP) has published soil guides for uranium, radium, and lead-210 based on a dose rate of 500 mrem/year. Adjusting these guides to reflect the 100 mrem/yr effective dose equivalent (reducing each guide by a factor of five) results in adjusted guides of 320 pCi of uranium per gram of soil, 8 pCi of radium per gram of soil, and 3 pCi of lead-210 per gram of soil (NCRP, 1984). Since all three of these materials are found in soil, the sum of the fractions (the observed concentration divided by the concentration limit) must not exceed unity (one). The sum of fractions technique is used by the Nuclear Regulatory Commission (NRC), U.S. DOE and Colorado regulations when addressing mixtures. fraction is less than 10 percent, the material is considered non-existent for the purposes of the sum of fractions calculation. Based on the above guides, preliminary analyses will be for uranium only. If the uranium concentration exceeds 10 percent of the guide (32 pCi/gm), the radium and lead-210 concentrations in the soil sample will be determined. If the sum of fractions is found to exceed unity, and the activity at the unit is significantly greater than the background activity for these compounds, soil removal will be used to reduce the sum of fractions to unity or less. The use of water standards or detection limits for volatile organics in soil is quite conservative based on the results of the risk assessment performed as part of the feasibility study for the 881 Hillside (U.S. Department of Energy, 1988). The results of the risk assessment indicate acceptable soil concentrations far in excess of water standards or detection limits. The acceptable soil concentrations for six volatile organic compounds determined from information presented in the risk assessment are presented in Table V. TABLE V ACCEPTABLE SOIL CONCENTRATIONS FOR SELECTED PARAMETERS | <u>Parameter</u> | Concentration (ug/kg) | |----------------------|-----------------------| | Phthalate | 1,500,000 | | Carbon Tetrachloride | 7,920 | | 1,2-dichloroethane | 11,300 | | 1,1-dichloroethene | 1,780 | | Perchloroethylene | 20,200 | | Trichloroethylene | 93,800 | | | | Based on the analyses described above, if the soils are determined to be uncontaminated, but are suspected to be affected by spilled or leaked fuel oil, additional testing may be required for evaluation and disposal. Such testing is outside the scope of this closure plan since fuel oil is specifically excluded from the definition of a pollutant or contaminant by 40 CFR 300. However, in general, benzene-toluene-ethylbenzene-xylene (BTEX), lead, PCBs, and ignitability are often required by disposal facilities that accept petroleum contaminated soils. # Quality Assurance/Quality Control: The Quality Assurance/Quality Control (QA/QC) procedures to be used for soil sampling and analyses are presented in the CEARP, Phase 2: Rocky Flats Plant, IGMP (U.S. Department of Energy, 1987b). The QA/QC Plan is reproduced in Appendix 6 of this closure plan. # 3.2.2 Soil Characterization During Tank System Removal During removal of the tank system, additional soil characterization will be conducted to confirm the extent of soil removal that is planned based on the results of initial soil characterization. If the initial characterization indicates the adjacent soils are uncontaminated, the soil being excavated outside the tank but within the boundary defined by the four exploratory borings will be characterized. If contaminated soils are identified during the initial characterization, those soils along the proposed boundaries defining the extent of contamination will be characterized. The procedures to be followed for characterization are outlined below. The soils will be visually surveyed as they are removed or at the suspected contamination boundaries for signs of contamination and will be surveyed with a portable GC for TCA and TCE. The portable GC will be used by performing a head-space analysis in the field on soil samples (Clark, 19??; Spittler, 1980; Spittler, 19??a; and Spittler, 19??b). The portable GC readings
will be recorded. A portable GC reading of greater than 0.05 ppm (Spittler, 19??b) for either of the two substances and visual evidence of contamination will be used to identify potentially contaminated soil. If the initial soil characterization described in Section 3.2.1 indicates the soils are uncontaminated, the soils from the tank edges to the borings will be assessed to evaluate if soil contamination is present, but does not extend all the way to the borings. This assessment will be conducted by stockpiling the soils between the tank edges and the borings into two groups during tank system removal. One stockpile will consist of potentially contaminated soils; the other group will be potentially uncontaminated. Potential contamination will be based on visual contamination and the field screening with the portable GC. The purpose of the screening is to minimize the volume of soil that must be treated as contaminated. Four samples obtained from each stockpile will be composited for laboratory analyses. The samples will be obtained from one foot below the exterior of of the stockpiles. These samples will be analyzed in the laboratory as discussed in the "Laboratory Analyses" subsection in Section 3.2.1. Ιf analyses indicates either stockpile or both stockpiles are contaminated, the entire stockpile(s) will be handled as contaminated soil. If analyses indicates either stockpile or both stockpiles are not contaminated, the entire stockpile(s) will be handled as "clean" soil. If contaminated soils are present adjacent to the tank, field screening, laboratory analyses and removal will be conducted until the limit of contaminated soils has been reached. The field screening and laboratory analyses procedures described previously will be followed. # 3.3 Removal of the Tank System and Contaminated Soils #### 3.3.1 Tank and Soil Removal Procedures The tank, lines and any soils contaminated with hazardous wastes will be excavated and removed. Excavation and removal will be conducted with equipment traditionally used for this application, such as backhoes, front-end loaders, and small front end loaders. Excavation and removal of contaminated soils will continue only until approximately one foot above the ground-water level. Saturated soils contaminated with hazardous wastes will be handled through ground-water remedial action. #### 3.3.2 Tank Decontamination and Disposal Procedures The tank will be decontaminated following removal. If decontamination is shown to be effective, the tank will be disposed of at an off-site facility approved for disposal of non-hazardous wastes. If decontamination is shown to be ineffective, the packaging and disposal procedures presented in Section 3.3.3 will be followed. The decontamination procedures to be attempted and the criteria to be used to evaluate the decontamination effectiveness are presented below. After removal, the tank will be cut open so both the interior and exterior surfaces of the tank can be decontaminated. The tank will be decontaminated in the Building 889 decontamination facility. The decontamination system expected to be used is expected to heat water to approximately 350°F at 250 psig pressure. The super-heated, high-pressure stream will be sprayed on the tank's interior and exterior surfaces through a series of nozzles incorporated into the vacuum/spray cleaning head. The exact equipment used for decontamination will vary depending on procurement of capital equipment. Rinse water from the process will be sampled for the presence of hazardous substance list (HSL) volatile organic compounds, which includes the hazardous constituents stored in the tank. If the levels of HSL volatiles are below detection limits, the tank will be considered decontaminated. If the levels of HSL volatiles are above detection limits, the decontamination process will be repeated. If all attempts at decontamination prove unsuccessful, the tank will be disposed of as described in Section 3.3.3. # 3.3.3 Tank and Soil Packaging and Disposal The procedures presented below will be followed for the tank only if decontamination procedures are shown to be ineffective; the tank's associated lines; and for any soils contaminated with hazardous waste. The tank and associated lines will be broken down by mechanical means as necessary for packaging. Following size reduction, the tank and lines will be packaged in boxes made of plastic-lined, triple-wall fiberboard with capacities of approximately 15 cubic feet. The boxes will be disposed of at U.S. Pollution Control's, Inc. (USPCI), hazardous waste disposal facility at Grassy Mountain, Utah, or at another approved facility. Manifests and shipping records will be maintained by the U.S. DOE. Following removal of soil contaminated with hazardous waste, the soil will be packaged in boxes made of plastic-lined, triple-wall fiberboard, or in 55-gallon drums, depending on the requirements of the treatment/disposal facility. The boxes have capacities of approximately 15 cubic feet. If no radioactive contamination is found in the soils, the boxes or drums will be disposed of at USPCI's Grassy Mountain, Utah, disposal facility, or at another approved facility. If radioactive contamination is found in the soils, the boxes or drums will be disposed of at a facility approved for disposal of radioactive-hazardous mixed waste. All soil removal activities must comply with a Rocky Flats Plant Operational Safety Analysis (OSA) procedure. These OSAs are required for all activities with a potential risk for serious injury, radiation exposure to personnel, or damage to property or the environment. The OSA requirement and definition are currently under review. The current draft of this requirement, RFOSA-1 (Rockwell, 1988), presented in Appendix 7, describes the procedures for removal of plutonium and/or uranium contaminated soil at the Rocky Flats Plant. If possible, the scope of RFOSA-1 will be expanded to also cover removal of soil contaminated with non-radioactive hazardous substances, and as well as removal CO7890010526 Date: April 5, 1988 Revision No.: 1 of soil contaminated with mixed waste. If this is not possible, a new OSA will be developed to govern these new concerns. The approved OSA governing soil removal activities at the No. 4 tank will be submitted to the CDH and U.S. EPA, two months before soil removal activities begin, for review. #### 3.3.4 Additional Activities Subsequent to removing the tank system and any soils contaminated with hazardous wastes, two new inspectable storage tanks will be placed in a below-grade vault. Any portion of the excavation area requiring backfilling will be backfilled with clean soils. Soils removed from the excavation that are not contaminated, as determined by the sampling and analyses discussed in Section 3.2, and do not contain petroleum products, may be reused for backfill. Clean soils from other areas of Rocky Flats may also be used for backfill. The soils will be placed and compacted to at least 95% of the maximum standard Proctor density at a moisture content near optimum. The equipment used for compaction will be appropriate to achieve the required compaction characteristics for the CO7890010526 Date: April 5, 1988 Revision No.: 1 types of soils being compacted. For example, a sheepsfoot compactor may be used for clay soils and a smooth-drum roller may be used for granular soils. The surface of the backfill will be graded to the approximate elevations that existed prior to tank, lines and soil removal. The graded surface will be covered with a concrete pad. #### 3.3.5 Access Control Access to the work area will be limited to authorized personnel only. Exit from the working area will be through a clean, restricted area in the decontamination area. Decontamination is discussed in Section 4.0. #### 3.3.6 Dust Control Dust palliatives, such as water and/or soil stabilizer sprays, will be used to control resuspension of soil during excavation. The need to implement dust control and the procedures selected will be based on visual observations of the work area. Date: April 5, 1988 Revision No.: 1 #### 3.3.7 Health and Safety Plan A site specific Health and Safety Plan, or such Health and Safety procedures as identified in RFOSA-1, covering removal of the tank, associated lines, and any contaminated soils will be submitted to the CDH two months before closure activities begin. The plan will comply with all Occupational Safety and Health Administration (OSHA), CDH, U.S. EPA and U.S. DOE requirements. The procedures presented below are quidelines that will be followed during closure activities. Additional procedures and details will be presented in the site specific Health and Safety Plan, or in RFOSA-1. Worker safety guidelines, such as OSHA regulations, DOE orders and Rocky Flats Plant policies will be followed. Protective clothing will be similar in nature to: - . hardhats, - hard-toe boots, - . Tyvek overboots, - Tyvek suits, and - dust masks. The intent of this equipment is to provide a barrier to inhalation, ingestion and absorption of dust particles. Appropriate protective gloves will be used. Date: April 5, 1988 Revision No.: 1 Air monitoring will be conducted using hand-held photoionization detectors. The site specific health and safety plan will present levels, which if exceeded, will require some action be taken, such as increasing respiratory protection or work cessation. #### 3.4 Ground Water #### 3.4.1 Summary of Applicable Requirements Ground-water contamination at the Rocky Flats Plant is currently the subject of ongoing investigations being performed pursuant to the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the U.S. DOE Comprehensive Environmental Assessment and Response Program (CEARP). 6 CCR 1007-3, Section 265.197(b) requires post-closure care only for tank systems that close with contaminated components in place.
However, a tank system that closes by removal may still have ground-water contamination that would subject it to the 6 CCR 1007-3, Section 264 Subpart F standards for ground-water monitoring and corrective action. Date: April 5, 1988 Revision No.: 1 In addition to the No. 4 tank, other solid waste management units (SWMUs) in the vicinity of and upgradient of the tank may have impacted ground-water quality. Therefore, if all contaminated soils are removed from the unsaturated zone and no contamination was found to have reached the water table, it will not be necessary to provide post-closure groundwater monitoring in the vicinity of the No. 4 fuel oil tank. If contaminated soils are encountered all the way to the water table, or if all contaminated soils are not entirely removed, then ground-water monitoring will be provided. This monitoring will be in compliance with all CDH and U.S. EPA regulations. The approximate location of the point of compliance is shown on Figure 11. Three downgradient monitoring wells will be located along the point of compliance. One upgradient well will be located in the closest feasible location upgradient of the No. 4 tank. #### 3.4.2 Ground-Water Quality The results of ground-water analyses from five quarterly samplings of well 44-86 are presented in Table VI. As presented in Section 1.2.5, TCA, TCE, MeCl, and trichlorofluoromethane were found in the No. 4 fuel oil CO7890010526 Date: April 5, 1988 Revision No.: 1 # TABLE VI SUMMARY OF GROUND-WATER DATA FROM WELL 44-86 (Rockwell, 1987) #### page 1 of 5 | <u>Parameter</u> | Sampling | Sampling | Sampling | Sampling | Sampling | |--|---|--|--|---|--| | | Conducted | Conducted | Conducted | Conducted | Conducted | | | during | on | on | on | on | | | 11/86 | 5/19/87 | 6/23/87 | 8/21/87 | 12/10/87 | | VOLATILES (ug/l) | | | | | | | Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene | 10U(1) 10U 10U 10U 10U 1JB(2),(3) 5U 5U 5U 5U 5U 5U 1J 5U | NA (4) NA NA NA NA NA NA 4U NA 4U 4U 4U NA 4U NA 4U NA AU NA | NA NA NA NA NA NA NA 4U NA 4U 4U 4U NA 4U NA 4U NA NA NA | NA NA NA NA NA NA SU SU SU NA 11 SU NA NA NA NA | 10U
10U
10U
10U
5U
5U
5U
5U
5U
5U
10U
6J
5U
10U
5U | | Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene | 5U | 4U | 4U | 5U | 5U | | | 5U | NA | NA | NA | 5U | | | 5U | 4U | 4U | NA | 5U | | | 5U | NA | NA | NA | 5U | Date: April 5, 1988 Revision No.: 1 # TABLE VI SUMMARY OF GROUND-WATER DATA FROM WELL 44-86 (Rockwell, 1987) #### page 2 of 5 | | Sampling
Conducted | Sampling
Conducted | Sampling
Conducted | Sampling
Conducted | Sampling
Conducted | |------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | <u>Parameter</u> | during
11/86 | on
5/19/87 | on
6/23/87 | on
8/21/87 | on
12/10/87 | | VOLATILES (ug/l) | | | | | | | cis-1,3-Dichloropropene | 5U | NA | NA | NA | 5U | | 2-Chloroethylvinylether | 10U | NA | NA | NA | NA
5U | | Bromoform | 5U
10U | NA
NA | NA
NA | NA
NA | 10U | | 4-Methyl-2-pentanone
2-Hexanone | 10U | NA
NA | NA
NA | NA
NA | 100
10U | | Tetrachloroethene | 17 | 65 | 80 | 32 | 38.00 | | 1,1,2,2-Tetrachloroethane | 5U | NA | NA | NA | 5 U | | Toluene | 5U | NA | NA | NA | 5 U | | Chlorobenzene | 5U | NA | NA | NA | 5 U | | Ethylbenzene | 5U | NA | NA | . NA | 5U | | Styrene | 5 U | NA | NA | NA | 5U | | Total Xylenes | 5U | NA | NA | NA | 5 U | | METALS (mg/l) | | | | | | | Silver | 0.009U | 0.0076U | 0.0076U | 0.0076U | 0.00760 | | Aluminum | 4.30 | 0.0627 | 0.0290U | 0.0526 | 0.3720 | | Arsenic | 0.010U | 0.01 | 0.01U | 0.005U | 0.005U | | Barium | 0.280 | 0.0889 | 0.1224 | 0.1963 | 0.1379 | | Beryllium | 0.005U | 0.005U | 0.005U | 0.005U | (5) | | Calcium | 54.5 | 73.5722 | 88.8126 | 87.8197 | 76.4179 | | Cadmium | 0.005U | 0.0050U | 0.005U | 0.001U | 0 0000 | | Cobalt | 0.025U | 0.0220U | 0.0220U | 0.0220U | 0.0220U | Date: April 5, 1988 Revision No.: 1 TABLE VI SUMMARY OF GROUND-WATER DATA FROM WELL 44-86 (Rockwell, 1987) #### page 3 of 5 | Parameter | Sampling | Sampling | Sampling | Sampling | Sampling | |---------------|-----------|-----------|-----------|-----------|-----------| | | Conducted | Conducted | Conducted | Conducted | Conducted | | | during | on | on | on | on | | | 11/86 | 5/19/87 | 6/23/87 | 8/21/87 | 12/10/87 | | METALS (mg/l) | | | • | | | | Chromium | 0.010U | 0.0100U | 0.0100U | 0.0100U | 0.0100U | | Cesium | 0.150U | 0.2U | 0.2U | 0.02U | | | Copper | 0.020U | 0.0063U | 0.0063U | 0.0133 | 0.0159 | | Iron | 2.84 | 0.0296 | 0.0069U | 0.0256 | 0.2484 | | Mercury | 0.0002U | 0.0002U | 0.0004 | 0.0002U | 0.0004U | | Potassium | 3.60 | 5.0U | 5.0U | 5.4 | | | Magnesuim | 6.47 | 7.7647 | 8.1233 | 8.9531 | 7.0711 | | Manganese | 0.173 | 0.0637 | 0.0426 | 0.1125 | 0.1595 | | Molybdenum | 0.100U | 0.0220U | 0.0220U | 0.0220U | 0.0220U | | Sodium | 22.0 | 29.8134 | 27.6310 | 34.8147 | 29.4593 | | Nichel | 0.020U | 0.0370U | 0.0370U | 0.0370U | 0.0370U | | Lead | 0.005U | 0.0050U | 0.022 | 0.005U | | | Antimony | 0.060U | 0.06U | 0.06U | 0.02U | 0.005U | | Selenium | 0.005U | 0.005U | 0.005U | 0.005U | | | Strontium | 0.285 | 0.2832 | 0.3205 | 0.3703 | 0.3359 | | Thallium | 0.010U | 0.0100U | 0.01U | 0.01U | | | Vanadium | 0.025U | 0.0240U | 0.0240U | 0.0240U | 0.0240U | | Zinc | 0.057 | 0.02U | 0.0200U | 0.0853 | 0.0452 | Date: April 5, 1988 Revision No.: 1 # TABLE VI SUMMARY OF GROUND-WATER DATA FROM WELL 44-86 (Rockwell, 1987) #### page 4 of 5 | Parameter | Sampling
Conducted
during
11/86 | Sampling
Conducted
on
5/19/87 | Sampling
Conducted
on
6/23/87 | Sampling
Conducted
on
8/21/87 | Sampling
Conducted
on
12/10/87 | |---|--|--|--|--|---| | INORGANICS (mg/l) | | | | | | | Chloride
Total Cyanide
Nitrate-Nitrite-Nitrogen | 12
0.005U | 42.1
1.0U
6.50 | 22.5
1.0U
7.30 | 30.6
1U
7.65 | 25.7
NA
6.57 | | Sulfate
Total Dissolved Solids | 25
348 | 55.0
363 | 38.5
347 | 34.0
364 | 53.7
340 | | HC03-
CO3= | | 172 | 201
NA | 2.33 | 211
NA | CO7890010526 Date: April 5, 1988 Revision No.: 1 TABLE VI #### SUMMARY OF GROUND-WATER DATA FROM WELL 44-86 (Rockwell, 1987) #### page 5 of 5 | Parameter | Sampling
Conducted
during
11/86 | Sampling
Conducted
on
5/19/87 | Sampling
Conducted
on
6/23/87 | Sampling
Conducted
on
8/21/87 | Sampling
Conducted
on
12/10/87 | |------------------------|--|--|--|--|---| | RADIOCHEMISTRY (pCi/l) | | | | | | | Gross Alpha | 1+/-7 | 10+/-14 | 33+/-12 | 33+/-23 | 23+/-7 | | Gross Beta | 8+/-8 | 5 + / - 2 | 74+/-21 | 29+/-40 | 34+/-10 | | Uranium 233,234 | 2.0+/-0.4 | .76+/85 | 8.5+/ - 7.5 | 2.0+/-15 | 1.9+/0.3 | | Uranium 235 | ΝΆ | .34+/45 | 0.0 + / - 0.3 | 0.0+/-0.6 | .03+/06 | | Uranium 238 | 2.4+/-0.4 | 2.2 + / -1.0 | 2.3+/-0.8 | 2.5 + / -1.3 | 3.4 + / - 0.4 | | Strontium 89,90 | NA | 0.8 | <1.0 | 3.4 | 1.1 | | Plutonium 239,240 | 0.01+/-0.07 | 0.0 + /55 | 0.0 + / - 0.7 | 32+/49 | 0.00 + /13 | | Americium 241 | 0.05+/-0.13 | 0.0 + / -1.3 | 0.0 + /-1.7 | 0.0 + / -1.5 | 0.0+/80 | | Cesium 137 | NA | ΝÁ | ΝA | · | | | Tritium | 0.40+/-0.24 | <110 | <110 | <526 | <210 | #### Notes: - (1) U = Analyzed, not detected. (2) J = Present below detection limit. - (3) B = Present in blank. - (4) NA = Not analyzed. - Blank space = results not reported. Date: April 5, 1988 Revision No.: 1 tank, and/or the material in the fence post hole above detection limits. Of these compounds, TCA, TCE and MeCl were analyzed for in monitoring well 44-86. The results presented in Table VI indicate TCA was not detected in three out of five samplings; TCE was not detected in five out of five samplings; and MeCl was not analyzed for in three samplings, and was not detected in one of the two remaining samplings. In one sampling, TCA was found above the detection limit but was more than one order of magnitude lower than the proposed maximum contaminant level (MCL) of 0.20 mg/l. In a second sampling, TCA was found at a concentration less than the analytical detection limit. one sample, MeCl was found at a concentration less than the analytical detection limit, and was also found in a blank. The remaining ground-water quality results are presented for information purposes only and are not considered to indicate impacts from the No. 4 tank. The presence of 1,1dichloroethene in one sample,
perchloroethylene in five samples, and chloroform in one sample may be indicative of a contamination source not associated with the No. 4 tank. The presence of 2-butanone in one sample may be indicative of laboratory contamination. Date: April 5, 1988 Revision No.: 1 #### 3.4.3 Ground-Water Protection Standard The highest of the following standards will be selected for the ground-water protection standard if ground-water monitoring at the Building 443 No. 4 fuel oil tank is necessary: - . background concentrations, - . drinking water standards, - proposed or draft drinking water standards, - maximum contaminant levels, (MCLs) defined by the Safe Drinking Water Act and its subsequent amendments, and - discharge limits as contained in the Rocky Flats Plant Colorado Pollution Discharge Elimination System (COPDES) permit. COPDES limits are included because ground water and surface water are interconnected at the site and it has been determined that these concentrations are protective of human health and the environment. The highest of the above standards will be chosen since the standards have all been developed to be protective of human health and the environment and because some compounds can exceed standards protective of human health and the environment in natural background ground water. Date: April 5, 1988 Revision No.: 1 If well 44-86 consistently (for four quarters) indicates contamination above the ground-water protection standard for TCA, TCE, or MeCl, then this closure plan will be updated within 30 days of that determination, and a ground-water monitoring system, as discussed in Section 3.4.1, will be installed. CO7890010526 Date: April 5, 1988 Revision No.: 1 #### 4.0 DECONTAMINATION OF EQUIPMENT #### 4.1 Introduction As required by 6 CCR 1007-3, Sections 265.112(b)(4) and 265.114, construction equipment used during removal of the No. 4 tank or contaminated soils will be decontaminated. Auxiliary equipment associated with the No. 4 tank will also be decontaminated. Decontamination will involve the procedures described in the following section. #### 4.2 Decontamination Procedures All construction equipment involved with removing contaminated soils or the No. 4 tank will be scraped or brushed to remove chunks of soil or debris whenever the equipment leaves the excavation area. The area used for scraping or brushing will be raked and/or swept to collect all removed material. The collected material will initially be handled as a hazardous waste. A representative sample of this waste will be obtained and analyzed and the material handled appropriately based on the results of this analysis. If this waste qualifies as a hazardous waste, it will be Date: April 5, 1988 Revision No.: 1 shipped off-site to an approved treatment or disposal facility. At the end of all closure activities, all construction equipment that came into contact with contaminated materials, and all auxiliary equipment associated with the No. 4 tank are anticipated to be decontaminated in the Building 889 decontamination facility. This facility is currently equipped to decontaminate up to moderately sized construction equipment. The facility is planned to be enlarged by January 1989 to accommodate large construction equipment. The decontamination system expected to be used is expected to heat water to approximately 350°F at 250 psig pressure. The super-heated, high-pressure stream will be sprayed on the contaminated surface through a series of nozzles incorporated into the vacuum/spray cleaning head. The exact equipment used for decontamination will vary depending on procurement of capital equipment. The equipment used will provide for adequate decontamination of the construction equipment. Rinse water from the facility will be collected in a series of underdrains and transferred to Building 374 for process waste treatment. #### 4.3 Auxiliary Equipment As discussed in Section 1.4, the only auxiliary equipment associated with the No. 4 tank consists of a centrifugal pump connected to the tank and lines and a heater located inside the tank. #### 4.4 Construction Equipment Used During Closure Construction equipment to be used during closure may include backhoes, front-end loaders, small front end loaders, soil compactors and water trucks. If large quantities of soil are to be removed, additional equipment, such as haul trucks and scrapers, may be used. Additional equipment may be used during closure, if necessary. Date: April 5, 1988 Revision No.: 1 #### 5.0 GROUND-WATER MONITORING If portions of the No. 4 tank are closed with contaminated system components, soils or ground water remaining in place, those portions must meet the post-closure care requirements that apply to land disposal facilities (6 CCR 1007-3, Section 265.310) as specified in 6 CCR 1007-3, Section 265.197(b). Post-closure care for land disposal facilities requires ground-water monitoring as specified in 6 CCR 265.90 et seq. The Building 443 No. 4 fuel oil tank is anticipated to be closed with no wastes or contaminated soil remaining. The quality of ground water in the vicinity of the No. 4 tank will be evaluated as discussed in Section Section 3.4 presents information regarding the locations of the point of compliance, an upgradient well and three downgradient wells. If ground-water monitoring is required, an amended closure plan will be submitted. amended plan will address, in part, the number, locations and depths of wells to be used; the frequency of sampling, the parameters for which analyses will be conducted; the procedures for monitoring and sampling; and maintenance of the monitoring equipment. Date: April 5, 1988 Revision No.: 1 #### 6.0 CLOSURE CERTIFICATION #### 6.1 Certification Requirements Closure certification requirements are outlined in 6 CCR 1007-3, Section 265.115 and 40 CFR 265.115: "When closure is completed, the owner or operator must submit to the (Department of Health/Regional Administrator) certification both by the owner or operator and by an independent registered professional engineer that the facility has been closed in accordance with the specifications in the approved closure plan." Certification by an independent registered professional engineer does not guarantee the adequacy of the closure procedures and does not necessarily involve detailed testing and analyses. It implies that, based on periodic facility inspections, closure has been completed in accordance with the specifications in the approved closure plan (U.S. Environmental Protection Agency, 1981). ### 6.2 Activities Requiring Inspections by a Registered Professional Engineer Closure activities will be determined based upon the information obtained from the characterization of the Date: April 5, 1988 Revision No.: 1 adjacent soil. Closure activities requiring inspections by an independent registered professional engineer in order to meet closure requirements of 6 CCR 1007-3, Section 265.115 will be selected following soil characterization. Closure activities requiring inspections will include: - . soil characterization review; - evaluation of remaining wastes in the tank and lines and removal, if present; - . removal of the tank and associated lines; and - . removal of adjacent soil, if necessary. Observation of soil sampling activities will not be conducted by the engineer certifying closure. However, detailed records of all field work, signed by the field personnel, will be maintained and be made available to the certifying engineer. ### 6.3 Anticipated Schedule of Inspections by a Registered Professional Engineer An independent registered professional engineer will periodically review the closure operations when finalized in order that a final certification of closure can be developed which states that the closure has been carried out according to the plan. The engineer will obtain and review the results of chemical testing which provide a record of the progress and effectiveness of the implemented closure plan. Any deviations from the closure plan and their resolutions will be documented by the engineer performing the closure certification. The independent registered professional engineer and the owner will, at the end of closure, inspect the site and certify that the closure plan was carried out as described. Prior to final certification, deficiencies noted by the engineer will be corrected. When deficiencies have been corrected, the engineer will issue a written report to the regulatory agencies certifying that the facility has been closed according to this closure document. The certification of closure, signed by the owner and the independent registered professional engineer, will be mailed to the CDH within 60 days after completing closure of this unit. #### 7.0 SITE SECURITY The existing security measures at the Rocky Flats plant include: - a three-strand barbed wire cattle fence surrounding the facility (Figure 1) posted to identify the land as a government reservation/ restricted area, - a fence surrounding and armed guards posted 24 hours per day at two gates to the controlled area of the facility (Figure 1), - a 6-foot high chain link fence topped by 2 feet of three-strand barbed wire surrounding and guards posted 24 hours per day at gates to the perimeter security zone (PSZ), - guards patrolling the controlled area and PSZ 24 hours per day, and - . surveillance by security cameras 24 hours per day. The existing security measures are sufficient to meet the requirements of 6 CCR 1007.3, Section 265.14. The existing fences and gates are operated and maintained by the U.S. Department of Energy. Maintenance requirements will be performed by U.S. Department of Energy, regardless of the activities at the Building 443 No. 4 fuel oil tank. #### REFERENCES - Clark, 19??: Clark, A.E., Lataille, M., and Taylor, E.L., "The Use of a Portable PID Gas Chromatograph for Rapid Screening of Samples for Purgeable Organic Compounds in the Field and in the Lab," Source and date of
published paper unknown. - Federal Register, 1986: Federal Register, November 7, 1986, Part II, U.S. Environmental Protection Agency, Hazardous Waste Management System; Land Disposal Restrictions, Final Rule, 40 CFR part 260 et. al. - Hayden, 1988: Hayden J., February 24 and March 24, 1988, personal communication. - Hurr, 1976: Hurr, R.T., March 1976, "Hydrology of a Nuclear-Processing Plant Site, Rocky Flats, Jefferson County, Colorado," Open-File Report 76-268, U.S. Geological Survey, Denver, Colorado. - ICRP, 1977: International Committee of Radiological Protection, January 17, 1977, ICRP Report Number 26, Published by Pergamon Press, New York. - NCRP, 1984: National Council on Radiological Protection, 1984, "Exposure to Uranium Series with Particular Emphasis on Radon and its Daughters," NCRP Report Number 77. - Rockwell 1986a: Rockwell International, April 25, 1986, "Annual Environmental Monitoring Report, U.S. Department of Energy, Rocky Flats Plant, January Through December 1985," RFP-ENV-85. - Rockwell, 1986b: Rockwell International, July 21, 1986, "Draft Work Plan, Geological and Hydrological Site Characterization," unnumbered report. - Rockwell, 1986c: Rockwell International, March 11 to 27, 1986, Laboratory Test Results, Waste in Building 443 No. 4 Fuel Oil Tank, and Material in Fence Post Hole, Samples Taken March 7, 1986. Rockwell, 1987: Rockwell International, 1987, Laboratory Test Results from Monitoring Well 44-86, Samples Obtained November 1986, and May 19, June 23, August 21 and December 10, 1987. - Rockwell, 1988: Rockwell International, January 28, 1988, "Operational Safety Analysis (OSA)," HSE 2.03, Draft. - Settig, 1985: Settig, M., 1985, <u>Handbook of Toxic and Hazardous Chemicals and Carcinogens</u>, Second Edition, Noves Publications. - Shirk, 1986: Shirk, K., November 6, 1986 and November 14, 1986, personal communication. - Shirk, 1988: Shirk, K., February 24 and March 8, 1988, personal communication. - Spittler, 1980: Spittler, T.M., October 15-17, 1980, "Use of Portable Organic Vapor Detectors for Hazardous Waste Site Investigations," National Conference on Management of Uncontrolled Hazardous Waste Sites, Washington, D.C. - Spittler, 19??a: Spittler, T.M. and Oi, A.W., "Ambient Monitoring for Specific Volatile Organics Using a Sensitive Portable PID GC," Source and date of published paper unknown. - Spittler, 19??b: Spittler, T.M., Siscanaw, R.J., Lataille, M.M., and Parks, P.A., "Correlation Between Field GC Measurements of Volatile Organics and Laboratory Confirmation of Collected Field Samples Using the GC/MS," Source and date of published paper unknown. - U.S. Atomic Energy Commission, 1952: U.S. Atomic Energy Commission, March 27, 1952, "Piping Plan and Detail-Fuel Oil Storage Tank and Miscellaneous Details" and "Building No. 43 Plot Plan," Drawing Nos. RF-43-503-B and RF-Y-1-D. U.S. Department of Energy, 1987a: U.S. Department of Energy, December 15, 1987, "RCRA Part B Operating Permit Application for U.S. DOE-Rocky Flats Plant, Hazardous and Radioactive Mixed Wastes," CO7890010526, Revision No. 1. - U.S. Department of Energy, 1987b: U.S. Department of Energy, February, 1987, "Comprehensive Environmental Assessment and Response Program, Phase 2: Rocky Flats Plant, Installation Generic Monitoring Plan (Comprehensive Source and Plume Characterization Plan), "Draft. - U.S. Department of Energy, 1988: U.S. Department of Energy, March 1, 1988, "Feasibility Study Report for High Priority Sites (881 Hillside Area)." - U.S. Environmental Protection Agency, 1981: U.S. Environmental Protection Agency, 1981, Reprinted 1984, with Addendum, "Standards Applicable to Owners and Operators of Hazardous Waste Treatment, Storage and Disposal Facilities under RCRA, Subtitle C, Section 3004, Closure and Postclosure-Interim Status Standards [40 CFR 265, Subpart (G)], "Report SW-912. - U.S. Environmental Protection Agency, 1986: U.S. Environmental Protection Agency, November 12, 1986, "Interim Guidance: Dose Limits for Persons Exposed to Transuranium Elements in the General Environment." #### APPENDIX 1 LABORATORY TEST RESULTS - BUILDING 443 NO. 4 FUEL OIL TANK AND ASSOCIATED WASTES (ROCKWELL, 1986c) #### Rockwell International North American Space Operations Rocky Flats Plant P.O. Box 464 Golden, Colorado 80402-0464 C. T. ILLSLEY Account No. Date 3-26-86 Lab. No. EA&C T452B Reported by C. M. MOYNIHAN Approved D. Bokankin Bancar Sample Description Gas Chromatographic Analysis of Oil and Water Samples #### Analysis Results Gas chromatographic analysis of oil and water samples for volatile organic compounds indicates the presence of 1,1,1 trichlorothane (TCA) and trichloroethylene (TCE). Quantitation was calculated by an external standard method. | Lab No. | Location | TCA | TCE | |----------|----------------------|----------------------|--------------------| | 86007560 | Water Comp. Oil Tank | 10.7 ppm <u>+</u> 20 | Trace (>10 ppb) | | 86007561 | Water Comp. Oil Tank | 27.5 ppm <u>+</u> 20 | 25 ppb <u>+</u> 20 | | 86007562 | Comp. Oil Tank #4 | 58.0 ppm + 20 | 0 | | 86007563 | Comp. Oil Tank #4 | 65.0 ppm + 20 | 0 | ### Accu-Labs Research, Inc. 11485 W. 48th Avenue Wheat Ridge, Colorado 80033 (303) 423-2766 March 26, 1986 Page 1 of 2 Mr. Chuck Illsley Rockwell International Rocky Flats Plant P.O. Box 464 Golden, CO 80402-0464 RE: 8890-21539-2 Date Samples Rec'd 3-12-86 | REPORT | 0F | ANALYSIS | |--------|----|----------| | | _ | | | • | REPORT OF ANALISTS | | |---|--|---| | ALR Designation
Sponsor Designation | 8890-21539-2-1
Comp. Oil
Tank No. 4
3-11-86 | 8890-21539-2-2
Water - Comp.
Oil
3-12-86 | | Determination: mg/L | | | | GC/MS VOLATILE ORGANICS: | | | | Chloromethane
Bromomethane
Vinyl chloride
Chloroethane | <5
<5
<5
<5 | <5
<5
<5
<5 | | Methylene chloride
Acrolein
Acrylonitrile
Trichlorofluoromethane | 140
<5
<5
<5 | 25
<5
<5
17 | | <pre>1,1-Dichloroethene 1,1-Dichloroethane t-1,2-Dichloroethene Chloroform</pre> | <5
<5
<5
<5 | <5
<5
<5
<5 | | 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane | <5
17000
<5
<5 | <5
40
<5
<5 | | 1,2-Dichloropropane
c-1,3-Dichloropropene
Trichloroethene
Benzene | <5
<5
<5
<5 | <5
<5
<5
<5 | | Dibromochloromethane 1,1,2-Trichloroethane t-1,3-Dichloropropene 2-Chloroethylvinyl ether | <5
<5
<5
<5 | <5
<5
<5
<5 | March 26, 1986 Page 2 of 2 Mr. Chuck Illsley Rockwell International RE: 8890-21539-2 Date Samples Rec'd 3-12-86 #### REPORT OF ANALYSIS | ALR Designation
Sponsor Designation | 8890-21539-2-1
Comp. Oil
Tank No. 4
3-11-86 | 8890-21539-2-2
Water - Comp.
Oil
3-12-86 | |--|--|---| | Determination: mg/L | | * | | Bromoform | <5 | < 5 | | 1,1,2,2-Tetrachloroethane | <5 | <5 | | Tetrachloroethene | <5 | <5 | | Toluene | < 5 | <5 | | Chlorobenzene | < 5 | < 5 | | Ethyl benzene | <5 | < 5 | These samples are scheduled to be disposed of 30 days after the date of this report. Shugarts Organics Chemistry Supervisor cs/dh dl ## Accu-Labs Research, Inc. 11485 W. 48th Avenue Wheat Ridge, Colorado 80033 (303) 423-2766 March 27, 1986 Page 1 of 2 Mr. Chuck Illsley Rockwell International Rocky Flats Plant P.O. Box 464 Golden, CO 80402-0464 RE: 8890-21526-2 Date Samples Rec'd 3-10-86 | WELCKI OF VIVEISTS | REPORT | 0F | ANALYSI | S | |--------------------|--------|----|---------|---| |--------------------|--------|----|---------|---| | ALR Designation
Sponsor Designation | 8890-21526-2-1
No. 6 Fuel Oil
3-10-86 | 8890-21526-2-2
Comp. Oil (from a
3-10-86 fence post note) | |--|---|---| | Determination: mg/L | · | | | GC/MS VOLATILE ORGANICS: | | | | Chloromethane | <0.5 | <5 | | Bromomethane | <0.5 | <5 | | Vinyl chloride | <0.5 | . <5 | | Chloroethane | <0.5 | <5 | | Methylene chloride | <0.5 | 14 | | Acrolein | <0.5 | <5 | | Acrylonitrile | <0.5 | <5 | | Trichlorofluoromethane | <0.5 | 29 | | 1,1-Dichloroethene | <0.5 | <5 | | 1,1-Dichloroethane | 1.0 | <5 | | t-1,2-Dichloroethene | <0.5 | <5 | | Chloroform | <0.5 | <5 | | 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane | <0.5
<0.5
<0.5
<0.5 | <5
32
<5
<5 | | 1,2-Dichloropropane | <0.5 | <5 | | c-1,3-Dichloropropene | <0.5 | <5 | | Trichloroethene | <0.5 | <5 | | Benzene | <0.5 | <5 | | Dibromochloromethane | <0.5 | <5 | | 1,1,2-Trichloroethane | <0.5 | <5 | | t-1,3-Dichloropropene | <0.5 | <5 | | 2-Chloroethylvinyl ether | <0.5 | <5 | March 27, 1986 Page 2 of 2 Mr. Chuck Illsley Rockwell International RE: 8890-21526-2 Date Samples Rec'd 3-10-86 #### REPORT OF ANALYSIS ALR Designation 8890-21526-2-1 8890-21526-2-2 Sponsor Designation No. 6 Fuel 0il Comp. 0il 3-10-86 3-10-86 Determination: mg/L Bromoform <0.5 <5 1,1,2,2-Tetrachloroethane <0.5 <5 Tetrachloroethene <0.5 <5 Toluene 8.1 <5 Chlorobenzene <0.5 <5 Ethyl benzene 3.5 <5 These samples are scheduled to be disposed of 30 days after the date of this report. Chris Shugarts *U* Organics Chemistry Supervisor cs/dh dk #### APPENDIX 2 SAMPLING METHODS FOR WASTE CHARACTERIZATION Date: December 15, 1987 Revision No. 1 Appendix C APPENDIX C-2 SAMPLING METHODS (Shipping Regulations) Date: December 15, 1987 Revision No. 1 Appendix C Sampling methods used to collect hazardous wastes at the Rocky Flats Plant comply with those described in Appendix I of 6
CCR 261 (40 CFR 261). Methods were chosen for their ease in the collection of a representative sample, 6 CCR 264.13(b)(3) (40 CFR 264.13(b)(13)). Sampling location, matrix, container type and size, and accessibility were taken into consideration when assigning a sample method. This appendix details sample collection methods, sample handling and documentation, and sample shipment. #### 2.0 SAMPLING_PLAN #### 2.2 Sampling Methodology This section presents a discussion of the general sampling procedures for a variety of waste management units. #### 2.2.1 Containers The term container is used here as self-supporting receptacles designed for transporting materials. This includes drums and other mobile receptacles as opposed to stationary tanks. EPA & State regulations. The method of sampling varies for containers depending on degree of access to the waste. Ideally, several samples will taken from Date: December 15, 1987 Revision No. 1 Appendix C locations displaced both vertically and horizontally throughout the container. Open top containers are sampled by the three dimensional random sampling method. Closed containers with bungs or restricted openings are sampled by the two dimensional sampling method. If the container is found to have a multi-phase liquid in it, each phase is sampled separately. Access to the container is unlimited in bags, cardboard drums, and open-headed steel drums. Two-dimensional random sampling is used in this case for liquids, slurries, sludges, and solids from powders to granules. This method involves dividing the top surface of the waste into a grid, selecting grid sections using random number tables, and sampling each selected grid point along the entire vertical profile of the waste. The surface of the container is divided into at least four equal areas. The grids on the surface are numbered from left to right, north to south when facing in a northward direction. open containers with non-granular larger solids such as Kimwipes and rags, are sampled using a three dimensional random sampling strategy. The surface of the waste is divided into a grid as in two dimensional random sampling. The height of the container is divided into at least two imaginary levels from top to bottom. Specific levels and grid locations are then selected for sampling using a random number table. Samples are taken in this manner until the specified sample volume has been collected. Date: December 15, 1987 Revision No. 1 Appendix C Containers with small openings, such as drums with bungs, limit sampling to the vertical plane. In this case a sample is taken of the entire vertical profile of the waste at the point where access is allowed. Samples collected from these containers is representative if the waste is horizontally homogeneous. #### 3.2.2 Tanks Tanks are considered to be immobile waste containers and include above-ground and subsurface tanks and sumps (EPA and State regulations). The obstacles encountered in obtaining a representative sample from a tank are similar to those discussed above in container sampling. If the tank is open, the most representative set of samples is obtained using the three dimensional random sampling strategy described in Section 3.2.1. However, if it is known that vertical compositing yields a representative sample, two dimensional random sampling is adequate. Some tanks, such as very large open tanks or closed tanks, cannot be sampled by the simple random sampling methods because access restricts sampling to a portion of the tank. Where this is the case, sufficient samples are taken where physical constraints allow to address any vertical heterogeneity of waste components in the tank. This may be accomplished by composite sampling from the outlet port of the tank as the tank is being emptied. Appendix C The sampling devices used for tank sampling vary with the size of the tank. Sampling equipment is discussed more fully in Section 3.2. #### 2.2.3 Process Streams Solid or liquid waste samples are collected from the process stream prior to containerization if they are combined with other waste streams in the container or tank. In this case, a grab sample is taken by immersion or scooping the waste at one point in time. Sampling at more than one point in time is only conducted if process operations vary considerably over time. #### 2.2.4 Waste Piles Waste accessibility, usually a function of pile size, is an important consideration in selecting a sampling methodology for waste piles. A smaller pile that is not homogeneous or that contains an unknown is sampled using the three dimensional simple random sampling method. #### 2.3 Sampling Equipment This section describes general items needed for sampling and specific EPA approved equipment for sampling a number of waste types. A general guide to the sampling equipment to be used for each waste type is presented in Table C-2-1. Sampling methodologies and equipment may vary from the guide if those Bottle Date: December 15, 1987 Revision No. 1 Revision No. Appendix C TABLE C-2-7 MATRIX SPECIFIC SAMPLE METHODS | MATRIX | ABBREVIATIONS | SAMPLE METHOD | |-------------|---------------|---| | | | | | Aqueous | a q u | <pre>bailer, coliwasa, dipper, pour, pump, thief, weighted bottle</pre> | | Liquid | liq | bailer, coliwasa, dipper, pour, pump, thief, weighted bottle | | Oil | oil | coliwasa, dipper, pour, pump, scoop, thief | | Sludge | slu | scoop, shovel | | Solid | sol | <pre>grab (hand, tongs, tweezers), scoop, tin snips</pre> | | CONTAINMENT | <u>r</u> | SAMPLE METHOD | | Drum | | coliwasa, thief | | Tank | | bailer, coliwasa, dipper, weighted bottle | | Process Str | ream or Pipe | dipper | | Waste Pile | | scoop, shovel | pour Revision No. 1 Appendix C proposed are impractical. The decision to vary from these recommended methods is made by the on-site project manager or building supervisor. #### 2.2.1 General Items General equipment is needed during a sampling event to record and document sampling information, properly preserve samples, and decontaminate the outside surface of sample bottles and equipment. #### These items include: - logbook, ink pens; - watch; - sample containers/labels; - sample preservatives; - stainless steel bucket for compositing during random sampling; - polyethylene sheeting; - paper towels; - HPLC/distilled water; - pH meter/buffer solutions; - beaker for field measurements; - plastic squeeze bottles for decontamination of instrument probes; - coolers with ice; - wash bucket; - rinse bucket; - alkaline detergent; - brushes; - plastic trash bags; - methanol; - tap water; and - distilled water. ## 3.3.2 Composite Liquid Waste Sampler (coliwasa) The coliwasa is used to sample liquids or slurries contained in drums, shallow tamks, pits and similar containers. It consists Revision No. 1 Appendix C of a tube equipped with an end closure that can be opened while the tube is submerged in the material to be sampled. A diagram of the sampler is shown in Figure 2.3. The procedure for sampling using a coliwasa is as follows: - Adjust sampler's locking mechanism to ensure the stopper provides a tight closure. Open sampler by placing stopper rod handle in the T-position and pushing the rod down until the handle sits against the sampler's locking block. - 2. Slowly lower the sampler into the waste at a rate that permits the level of liquid inside and outside the sampler to remain the same. If the level of waste in the sampler tube is lower inside than outside, the sampling rate is too fast and will produce a nonrepresentative sample. - 3. When the sampler hits the bottom of the waste container, push sampler tube down to close and lock the stopper by turning the T-handle until it is upright and one end rests on the locking block. - 4. Withdraw coliwasa from waste and wipe the outside with a disposable cloth or rag. Limitations of the coliwasa include difficulty in decontamination and a prohibition on using the glass coliwassa to sample liquids that contain hydrofluoric acid. A modification to the coliwasa described consists of a hollow glass tube with a glass insert tube that acts like a stopper. This coliwasa operates in a similar manner, where the glass insert can be lifted off the bottom of the tube when submerged in the material to be sampled. The advantage to this type of coliwasa is that it is disposable, which eliminates the possibility of cross contamination. Appendix C FIGURE 2.3 COMPOSITE LIQUID WASTE SAMPLER SAMPLING POSITION CLOSE POSITION Appendix C #### 2.2.3 Drum Thief A drum thief consists of a hollow glass tube that can be used to sample liquids in drums and shallow tanks. A thief operates on a principle similar to a coliwasa. The procedure for sampling is as follows: - Lower the sampler slowly into the waste so that the level of liquid inside the tube remains the same as the level in the waste receptacle. - 2. When the sampler touches the bottom of the container, place a thumb or stopper over the top of the tube to seal. - 3. Withdraw the thief from the waste and wipe the outside with a disposable cloth or rag. - 4. Place the bottom of the thief in the sample container and release the seal so that the waste in the thief flows into the sample bottle. Like the coliwasa, a glass thief cannot be used to sample liquids that contain hydrofluoric acid. One advantage of the glass thief is that it is disposable which eliminates the possibility of cross contamination. #### 2.2.4 Teflon Bailer A Teflon bailer is useful in sampling deep tanks or sumps at depth. The sampling methodology involves slowly lowering the bailer to the desired depth, then raising the bailer and collecting the sampler. Teflon is a fairly nonreactive material and can be used to sample organic and inorganic liquids. The bailer would not be effective for sampling slurries or very viscous liquids. Appendix C #### 2.2.5 Weighted Bottle This sampler consists of a glass
or plastic bottle, sinker, stopper, and a lime that is used to lower, open, and raise the bottle. The procedure to be used is as follows: - 1. Assemble weighted bottle sampler. - 2. Lower the sampler to directed depth and pull out the bottle stopper by jerking the line. - 3. Allow bottle to fill completely as evidenced by cessation of air bubbles. - 4. Raise sampler, cap, and wipe off with a disposable cloth. The bottle can serve as a sample container. Prior to sampling using the weighted bottle, the wastes must be characterized enough to ensure that the waste will not corrode the sinker, bottle holder, or line. #### 2.2.6 Dipper or Ladle A dipper consists of a glass or plastic beaker on the end of a metal or plastic pole that is used as the handle. The dipper will be used to sample liquids and slurries in tanks that cannot be sampled using any of the previous methods. The ladle is similar to the dipper, with a shorter handle. It will be used to sample more shallow process tanks and machine reservoirs. The procedure for using either device is as follows: Assemble dipper or ladle by placing beaker in clamp and fastening shut. CO7890010526 Revision No. Appendix C 2. Turn the device so the mouth of the beaker faces down and insert into waste material. Turn beaker right side up when dipper is at desired depth. Allow beaker to fill completely as shown by the cessation of air bubbles. 3. Raise dipper or ladle and transfer sample to container. Guidelines to be used in dipper and ladle sampling include not using a nonfluorocarbon plastic beaker to sample wastes containing organic material and not using a dipper with a glass beaker to sample wastes with a high pH or wastes that contain hydrofluoric acid. #### 2.2.7 Scoop Scoops and shovels are used to sample granular or powdered material in bins, shallow containers, and sludges. Sampling with a scoop involves obtaining a full cross section of the waste material. #### 2.2.8 Pour Wastes contained in bottles, glass or polyethylene, are poured directly into sample collection containers. Depending on "mouth" size of the bottle a funnel may be necessary. ### 2.3 Equipment Decontamination Equipment is decontaminated after each use to minimize cross contamination between samples. A decontamination station is set up outside of a building prior to beginning sampling in that Revision No. 1 Appendix C Polyethylene sheeting forms the base of the building. decontamination area, which includes a detergent wash, tap water rinse, methanol rinse, distilled water rinse, and drying The equipment is washed by brush with an alkaline detergent, rinsed with tap water, rinsed with methanol, rinsed water, and dried with paper towels. distilled decontamination solutions and rinse waters are containerized and stored at the Rocky Flats site. The waste solutions are treated onsite by Rockwell in their process waste system. The paper towels used for drying decontaminated equipment are disposed of with the sanitary trash onsite. Appropriate disposal of the solutions are determined after review of the sample analysis data. #### 3.0 SAMPLE HANDLING AND DOCUMENTATION This section describes procedures for sample handling and documentation from sample collection through receipt by the laboratory. Involved are discussions on: - Sample tracking system; - 2. Organizational structure for sample documentation; - 3. Sample identification and collection; and, - 4. Documentation and chain-of-custody. #### 3.1 Sample Tracking System A computerized system has been developed that provides complete Revision No. 1 Appendix C documentation of sample custody from sample collection through receipt of the samples by the laboratory. The system is capable of logging daily receipt of samples, recording field details on individual samples, and chain-of-custody. #### 3.2 Organizational Structure for Sample Documentation On a daily basis the Sample Coordinator determines the number and location of samples to be collected for that date and assigns these tasks and sample numbers to the field sampling crew. The Sample Coordinator specifys proper sampling devices, sample container types, and preservation methods consistent with the analysis plan for the project. The field sampling crew leader is responsible for recording sampling activities in detail in a field logbook and maintaining custody of the samples until they are packaged for off-site shipment or delivered to the on-site laboratory for extraction or analysis. Lab personnel enter data into the computer tracking system from the field logbooks at the end of each day. The sampling crew leader and lab personnel review data input and data reports for accuracy prior to packaging and shipping samples. Off-site shipping records are recorded by the lab personnel entering data whem necessary. 3.3 <u>Sample Collection, Decontamination, and Identification</u> Sample collection follows the methods and procedures described in CO7890010526 Date: December 15, 1987 Revision No. 1 Appendix C Section 3. The specific methods and equipment used are different for each type of sample collected. These methods are subject to change if additional information on the waste streams or possible sampling access becomes available. The decision to change sampling methods or analyses is made by the Sample Coordinator or field crew leader. To protect sampling and laboratory personnel from potential exposure to possible hazardous or radioactive contaminants, all samples are decontaminated prior to packaging. After each sample is collected, sample containers are washed on the exterior with a detergent, rinsed with tap water, and dried with paper towels. Decontamination solutions and rinse waters are containerized and stored with the equipment decontamination solutions. These solutions are disposed by Rockwell International in the process waste treatment system. The data and time of collection and the sampler's initials are be entered on a preprinted bottle label that contains the following information: - 1. The site name; - 2. A unique sample identification number; - 3. Laboratory destination; - 4. Matrix; - 5. Analyses requested; and - 6. Time of sample collection. Date: December 15, 1987 Revision No. 1 Appendix C All of this information is entered into the sampler's notebook, along with the chain of custody number. #### 3.4 Radiological Screening of Samples Samples from uranium buildings are screened for depleted uranium content. Samples from the PSZ area are screened for plutonium and americium content. The screening is performed prior to moving the samples from the point of generation, if the content is expected to be high, or prior to the samples being received at the laboratory. A small vial containing 30-50 ml of the sample is analyzed using a lithium drifted silicone detector [SI(Li)] and a multichanmel analyzer. The plutonium concentration is determined from the 17.2 keV l x-ray photo-peak. The americium concentration is determined from the 50 keV photo-peak. Uranium concentrations are determined using either a pancake Geiger-Mueller detector and scaler or from the 16.2 keV Thorium L x-ray photo-peak on the Si(Li) system. # 3.5 <u>Documentation and Chain-of-Custody</u> Field notebooks provide the means for recording and documenting all data collecting activities performed at a site. As such, entries is as descriptive and detailed as possible, so that a Date: December 15, 1987 Revision No. 1 Appendix C particular situation may be reconstructed without reliance on the collector's memory. Field notebooks are bound, with consecutively numbered pages. Each notebook is identified by a number assigned by the project manager. The cover of the motebook contains the following information: - o Person or organization to whom the book is assigned; - o Book number; - o Project name; - o Start date; and, - o End date. At the beginning of the field investigation entry, the following information is recorded: - o The date and start time; - o All field personnel present; - o Level of personal protection used on-site; and, - o The signature of the person making the entry. All field measurements made and a description of the samples collected is recorded. All entries are made in pen; no erasures is permitted. If an incorrect entry is made, the data is crossed out with a single strike mark and initialed. Entries are organized into easily understandable tables where possible. Any significant observations is also be recorded. Revision No. 1 Appendix C At each station where a sample is collected or a measurement made, a detailed description of the location of the stations is recorded. All equipment used to make measurements is also identified by preassigned equipment numbers and calibration of that equipment documented. All equipment is calibrated per the equipment instructions. The equipment used to collect samples is noted, along with other information related to the sample effort, such as: - o The time of sampling; - o Sample description; - o Detailed imformation on the sampling procedure used; - o Number and volume of containers. Sample numbers are assigned prior to sampling. Duplicates, which receive separate sample number, are noted under sample description. The day before sample collection, the Sample Coordinator or his designee contacts the data management person at the on-site lab and lists the samples to be taken the following day. The sampling crew arrives at the on-site lab the morning of the sampling and picks up bottles, bottle labels, and a chain of custody form listing the samples to be collected that day. The bottle labels are affixed to the sample bottles after sample collection and decontamination of the outside of the bottles. Any changes in samples collected or analyses to be run are Revision No. 1 Appendix C indicated on the chain-of-custody form in the field. All changes are initiated by a sampling team member. After collection, the samples are delivered to the on-site laboratory trailers by sampling
personnel and logged into the computer tracking system by laboratory personnel. The field sampling crew leader and laboratory personnel also input pertinent field information for unique samples into the tracking system. Both of the duplicate chain-of-custody records are signed by the field sampling crew leader. The original custody record is maintained at the on-site laboratory. The duplicate custody record is bound in a permanent binder and kept in the Sample Coordinator's office onsite. # 3.6 Packaging, Marking, Labeling for Off-Site Shipping Samples destined for off-site shipment are prepared in accordance with U.S.D.O.T. regulations. All samples collected during the sampling program are considered hazardous materials samples and are handled accordingly. If the material in the sample is known or can be accurately identified, it is packaged, marked, labeled, and shipped according to the specific instructions for that material, as detailed in the W.S.D.O.T. Hazardous Materials Table 49 CFR 172.101. For samples of bazardous substances of unknown content, the Revision No. 1 Appendix C appropriate transportation category is selected through a process of elimination from the attached Table C-2-2. While it is probable that most unknown hazardous materials samples collected will not contain radioactive materials or "Poison A" materials, it is essential that the following gradient hierarchy be considered. radiation survey instruments demonstrate, or reasonable probability exists, that the unknown hazardous sample radioactive, the appropriate U.S.D.O.T. shipping regulations "radioactive materials" must be followed. Ιf radioactive material is eliminated, it must then be considered that the sample contains "Poison A" materials. U.S.D.O.T. defines "Poison A" as an extremely dangerous poisonous gas or liquid or such a nature that a very small amount of gas, or vapor of the liquid, dangerous to life. Most "Poison A" materials are gases and would not be found in glass or drum-like containers. Based upon information available, a judgment must be made whether a sample from a closed container is a "Poison A." If "Poison A" is eliminated as a shipment category, the next two classifications are "flammable" or "nonflammable" gases. Since an open container is not expected to contain a significant amount of gas, "flammable liquid" is the next applicable category. With the elimination of "radioactive materials", "Poison A", "flammable gas", and "nonflammable gas", the sample can be Appendix C #### TABLE C-2-2 # U.S.D.O.T. HAZARDOUS MATERIALS CLASSIFICATION (40 CFR 173.2) LISTED IN ORDER TO DESCENDING HAZARD - 1. Radioactive Material - 2. Poison A - 3. Flammable Gas - 4. Nonflammable Gas - 5. Flammable Liquid - 6. Oxidizer - 7. Flammable Solid - 8. Corrosive Material (Liquid) - 9. Poison B - 10. Corrosive Material (Solid) - 11. Irritating Material - 12. Combustible Liquid (in containers having capacities exceeding 110 gallons) - 13. ORM-B (other regulated materials Series B) - 14. ORM-A (other regulated materials Series A) - 15. Combustible Liquid (in containers having capacities of 110 gallons or læss) - 16. ORM-E (other regulated materials Series E) Date: December 15, 1987 Revision No. 1 Appendix C X CO7890010526 classified as "flammable liquid" and shipped accordingly. These procedures also suffice for shipping any other samples classified below flammable liquids in the U.S.D.O.T. classification table. For samples containing unknown material, other classifications listed below flammable liquid are generally not considered. In order to eliminate classifications which appear below flammable liquid, a flashpoint test is required. Flashpoint testing is impractical and possibly dangerous. Thus, unless the sample is known absolutely to be a material or have a classification which is classified below flammable liquid, it is considered a flammable liquid and shipped as such. Applying the work "flammable liquid" to a sample does not necessarily mean that it is in fact flammable or liquid. Rather, it prescribes the class of packaging to be used pursuant to U.S.D.O.T. regulations. This is permitted under CFR Part 172.402h. As a matter of practice, all hazardous samples are shipped as flammable liquids unless a higher hazardous materials classification applies. The following instructions shall apply for shipment of a flammable liquid by cargo carrying aircraft, rail car, or other common carrier. Collect the sample in a glass or polyethylene container no larger than 16 fluid ounces with a nonmetallic, Teflon-lined screw cap. To prevent leakage, fill the container no more than 90 percent full. If an air space Date: December 15, 1987 Revision No. 1 Appendix C in the sample container would affect sample integrity (for example, the case of a VOA vial), place that container in a second container to meet the 90 percent requirement. - Seal the container and place in a 2-mil thick or thicker polyethylene bag, one sample per bag. Seal the bag. - Place the sealed bag inside metal can and cushion it with enough noncombustible, absorbent material (vermiculite, for example) between the bottom and sides of the can and bag to prevent breakage and absorb leakage. Pack one bag per can. Use clips, tape or other positive means to secure can lid. - Place one or more metal cans into a strong outside container such as a picnic cooler or a U.S.D.O.T. approved fiberboard box. Surround cans with noncombustible, absorbent, cushioning material for stability during transport. Total sample volume in the picnic cooler or fiberboard box shall not exceed ten gallons. A separate air bill and shipping declaration must be processed for each container or combination of containers such that the total sample volume on any air bill will not exceed ten gallons. - Include the chain-of-custody record, properly executed, in the outside container. The following instructions shall apply for land shipment of sample by car or truck (not by common carrier). - The instructions above for flammable liquids shall apply. - Sample containers are firmly secured such that they will not bounce against sides of the vehicle during transit or in the event of an accident. - Limit shipments to 1,000 pounds or less. Under 1,000 pounds, there are no placarding requirements [40 CFR 172.504(c)(1)]. Generally, in marking and labeling of samples classified as flammable liquids, use abbreviations only where specified. Place the following information on each paint can: - Laboratory name and address. - "Flammable Liquid, NOS UN1993." The designation "NOS" means "not otherwise specified." Use an approved D.O.T. label. - "Dangerous When Wet" must be used if the material is water reactive. Information placed on cans shall also be placed on at least one side of the outside shipping containers. If labeling is placed on more than one side, it must be affixed to all visible sides. "Cargo Aircraft Only" must be used on all outside shipping containers. Primt "Laboratory Samples" and "This End Up" or "This Side Up" on top of the outside shipping container. Outside containers must also contain the state "Inside packages comply with prescribed specifications." Put upward pointing arrows on all four sides of containers. Shipping papers must be provided for shipment of all samples (including those land carried by rental or personal car). A complete bill of lading and signed certification statement should be included. The following information should be included on the form in the order listed here: - "Flammable Liquid, NOS UN1993." - Net weight or net volume (weight or volume may be abbreviated) just before or just after "Flammable Liquid, NOS UN1993." - "Limited Daantity" (or Ltd. Qty.). - Further descriptions such as "Laboratory Samples" are allowed if they do not contradict required information. Revision No. 1 Appendix C Unknown hazardous material samples classified as flammable liquids or solids should be transported by rented or common carrier truck, railroad, or express overnight package services. They should not be transported by any passenger-carrying air transport system. #### 4.0 QUALITY ASSURANCE/QUALITY CONTROL The Quality Assurance Manager (QAM) is responsible for ensuring that the following procedures are implemented during the sampling program. #### 4.1 <u>Sample Collection for Quality Assurance</u> #### 4.1.1 Trip Blanks A full set of sample glassware and plastic containers are filled with laboratory grade water prior to beginning sampling each day, taken to the sampling site, and submitted for analysis for all parameters listed for the samples collected that day. The purpose of this section is to detect containment contributions from the glassware, and/or plastic containers. #### 4.1.2 Field Blanks Aqueous field blanks are prepared onsite each day sampling takes place. The field blanks are prepared by pouring laboratory Date: December 15, 1987 Revision No. 1 Appendix C grade water through sampling equipment simulate collection of an aqueous sample. Field blanks are collected, filtered, containerized, preserved, decontaminated, and shipped as if they were environmental samples. One field blank is prepared each day for each liquid sample collection method used. Samples are analyzed for parameters in the Hazardous Substance List to screen for cross contamination during sample collection and handling. # 5.1.3 Duplicate Samples Ten percent (10%) of the waste stream samples collected are sampled twice to provide duplicate samples. The Sample Coordinator determines which waste streams will be sampled in duplicate and assigns unique sample numbers to the duplicate samples. The duplicates are collected and handled as separate samples, with decontamination of equipment between duplicates. The duplicate are used as an indicator of the representativeness of the sampling and procedure. Appendix C # APPENDIX C-2-A # HAZARDOUS SUBSTANCE SAMPLES Packaging, Marking, Labeling, and Shipping ## HAZARDOUS MATERIALS LABEL CHART
D.O.T. GENERAL GUIDELINES ON USE OF WARNING LABELS - Shapper must furnish and attach appropriate label(s) to each package of hazardous material offered for shapment unless exempted from licboling requirements. (Ref. Title 49, CFR, Sec. 172.400) - 2. If the meterial in a package has more than one hazard classification, one of which is Class A explosives. Class A poison, or Radioective Meterials, the package must be labeled for each hazard. (Ref. Title 49, GR, Sec. 172.402(a)) - 3. When two or more hazardous materials sidifferent classes are packed within the same packaging or outer enclosure, the outside of the package must be labeled for each suspensel involved. (Ref. Title 49, CFR, Sec. 172,404(a)) - 4 Redicoactive materials requiring labeling must be labeled on two opposite sides of the package. (Ref. Title 49, CFR, Sec. 172.403ff)). - 5 Labors must not be appoind to a packageontaining only material which is not subject to Parts 1 70 189 of this subchapter or which is exampled therefrom. This does not promise the use of labels in conformancewith U.N. recommendations ("Transport of Dangerous Goods" (1970), or with the IMCO requirements ("International Maritime Dangerous Goods Code") (Ref. Title 49,0FR, Sec. 172.401). PCopyright 19th & Published By: J. J. BLUST & AMOCIANDS, INC. Named, Manages 2000 9 (414) 725-2045 "International Publishers of Transportation Guiden and Future" Charles 3 | | ipping Samples
f Shipper | Pa | Air Waybill No. (Federal Express Airbill No. Page of Pages Shipper's Reference Number (Work Order No.) | | | | | | | |--|---|---|--|--|------------------|--------|--|--|--| | Consignee Person and Addr Receiving Sampl | | | | | · | | | | | | Two completed and sign
be Rended to the operate | ed copies of this Declaration mus
r | r , | MARI | ang | | | | | | | TRANSPORT DETAILS | | | | e to comply in all respects w | | | | | | | Thus, shipment is within the
Brindwittons prescribed for
(distants non-applicable) | Airport of Departure
(City Shipping Fr | (ma) | Dangerous Goods Regulations may be in breach of
the applicable law, subject to legal penalties. This
Declaration must not, in any circumstances, be
completed and/or signed by a consolidator, a | | | | | | | | AIRCA ONLY | | " | | rder or an LATA cargo agent. | | | | | | | Airport of Destination: C | ity Shipping To | s | Shipment type: (dates non-applicable) NON-RADIOACTIVE 1945 1 | | | | | | | | NATURE AND QUANTIT | Y OF DANGEROUS GOODS | | | | | | | | | | Dange | rous Goods Identification | | | | | | | | | | Proper Shipping Home | Class or Divente | UM er
10 Mm. | Sector
Serv
Resi | Generally and type of packing | Packing
loss. | Asthon | | | | | Flammable Liqui
Bumbers | f Flammable Liquid Cargo Aircraft Only | UN1993 | | l Cooler at (Cooler
Capacity) gallons
Limited Quantity | 173.1 | 8 | | | | | Additional Handling Inter | | | | | | | | | | | _172.402h | Com Curion | () | ••• | | | | | | | | accurately described at packed, marked and is condition for transport to | he contents of this consignm
ove by proper shipping name a
abelief, and are in all respec
y air amording to the applicable | ent are fu
and are cla
sta in the | illy as
estifie
prop | d, (Name, Title) | m. Dete | : | | | | | Massonal Government R | Armant | | | Signature | , , , , , , , | , | | | | | Person Shipping SCI
Address of Shipper | M (Full) | Pag |) | of Pages | ress Airbill No.
k Order Number) | |--|---|---|--------------------------------|---|--| | Consignee Person and Address Receiving SCBA | of Party | | | | | | Two completed and signed on
be handed to the operator | pies of this Declaration me | W V | LARN | DNG | | | TRANSPORT DETAILS The shipment is within the sensetors prescribed for (dutes non-applicable) SECTION AIRCRAFT CARGO AIRCRAFT ONLY | Airport of Departure
(City Shipping F | rom) D | ange
te ap
eclar
ompi | e to comply in all respect
trous Goods Regulations
oplicable law, subject to
ration must not, in any
leted and/or signed by
rder or an IATA cargo agen | may be in breach of
legal penalties. This
circumstances, be
a consolidator, a | | Airport of Destination: (Cit | y Shipping To) | s | hipm
NON- | ent type: (date non-applicable) | 223 | | MATURE AND QUANTITY OF Dangerous | Soods Identification | | | | | | Proper Shipping Name | Class or Diverse | UNL or
ED Ma. | Salar
deary
Rest | Constity and type of posting | Packing Authoriza | | Air, Compressed | Non-Flammable
Gas
Cargo Aircraft
Only | CIN1002 | | (# of) Cylinders
At 5,000 lbs. | 173.302 | | Additional Handling information This shipment prepared eccurling to: I hereby declare that the eaccurately described above packed, marked and labell | Sk 48CFR LATA Regulations of this consignity proper shipping name | ment are fu
and are cla
ects in the | sty a
selfic | M. (Name, Title) | αγ | | candition for transport by sir
National Government Regula | seconding to the applicat | ole internatio | nal a | (City Shipping Signature | From, Date) | | B-18 | accurately described above by proper shipping name and are classified. peached, marked and labelled, and are in all respects in the proper condition for transport by sir according to the applicable international and Rightonal Government Regulations. Name/Title of Signatory (Name, Title) Place and Described in the proper condition for transport by sir according to the applicable international and Signature | DOT Expenstion # DOE-E-7607 This shipment properd accreting to: 2 48CM UNIA Regulations UNIA Regulations | Additional Handling Information | See DOT Exemption
Attached | Hydrogen Flammable Gas UN1049 1 Cylinder at 173.3 | Proper Storage lines | Dangerous Goods Identification | Amport of Destination: (City Shipping To) NATURE AND QUANTITY OF DANGEROUS GOODS | TRANSPORT DETALS The anipment is within the applicable few, subject to legal penalti Declaration must not, in any circumstant completed and/or signed by a consolid forwarder or an IATA cargo agent. | Two completed and signed copies of this Declaration must WARNING be handed to the operator | Person and Address of Party Receiving OVA | Person Shipping OVA Address of Shipper All Waybill No. (Federal Express Airb. Page of Pages Shipper's Reference Number (Work Order 1 | |------|--|---|---------------------------------|----------------------------|---|----------------------|--------------------------------|---|---|--|---|--| | | Date) | | | | 73. | | | | the applicable
se in breach of
penalties. This
metances, be
possible tor, a | | | Airbill No. | Appendix C #### APPENDIX C-2-B #### SHIPPING OF RADIOACTIVE MATERIALS From: THE HEALTH PHYSICS AND RADIOLOGICAL HANDBOOK Bernard Schleien and Michael S. Terpilak Nucleon Lectern Associates, Inc., 1984. #### Shipping of Radioactive Materials This chapter is intended to be a comprehensive guide to the more prominent and basic regulatory requirements for the safe transportation of radioactive materials. Information is included on the shippers' requirements for limitation of activity content of packages, packaging, labeling, shipping documentation and control of radiation and contamination. Basic guidance also is included on the handling of transport incidents and emergencies during the transport of radioactive materials. The tables and illustrations in this chapter are directed toward the practical. The references listed in the bibliography are extensive, and should be consulted for a more detailed discussion of the information in this chapter. A great deal of the basic information contained herein is based on a Federal USDOT training publication which reviews the transport regulations for radioactive material. (Pamphlet "A Review of the DOT Regulations for Transportation of Radioactive Material," Revised Fall 1983) #### Table 12.1 Regulatory Organizations And Sources Statutory authority to regulate safety in the transport of radioactive materials is vested principally in two Federal Agencies -- the U.S. Department of Transportation (DOT) and the U.S. Nuclear Regulatory Commission (NRC). The U.S. Pastal Service also has established rules for certain very small mailable quantities of radioactive material. Pursuant to the Transportation Safety Act of 1974 ("Transportation Safety Act of 1974", as amended. Public Law 93-633, 88 Stat. 2156, 49 USC 1808, Jan. 3, 1975) and earlier legislation, (The Department of Transportation Act of October 15, 1967, Public Law 89.670 Stat. 937, 49 USC 1657) the DOT is the Federal agency charged with the overall responsibility to regulate shippers and carriers of all types of hazardous materials in interstate and foreign commerce. Under its authority of the Atomic Energy Act of 1954 ("The Atomic Energy Act of 1954," as amended, Public Law 83-703, 68 Stat. 919, 42-USC Chapter 23) and the Energy Reorganization Act of 1974 ("Energy Reorganization Act of 1974," as amended, 42 USC 5841), the NRC regulates the use, possession and transfer (including transportation) of licensed byproduct, source and special nuclear material. In certain Agreement States*, the state regulates the use, possession and intra-state transportation of byproduct and source materials licensed by the state. Common and contract carriers however are exempted from licensing to the extent that they possess, transport or store licensed material delivered by a licensee for transport. Because of the overlapping and duplicative authority to regulate transport of radioactive materials, the NRC and DOT have accomplished a written Memorandum of Understanding, ("Transportation of Radioactive Materials; Memorandum of Understanding", Federal Register, (44 FR 38690), July 2, 1979), intended to avoid duplicative effort and conflicts. Table 12.1. Sources of Federal Regulations Transportation of Radioactive Materials Title 49 Department of Transportation's Hazardous Materials Regulations, (49 CFR Part 100-77 "Hazardous Regulations" of the US Department of Transportation, Revised as of Oct. 1) Parts 100-177 and 178-179. #### Main Headings 49 CFR 106 - Rulemaking Procedures 49 CFR IO7 - Hazardous Materials Program Procedures 49 CFR 171 - General Information, Regulations and Definitions ^{*}States which have entered into an agreement with the NRC pursuant to Section 274 of the Atomic Energy Act of 1954, as amended, under which the NRC has relinquished to such States the majority of its regulatory authority over source, byproduct, and special nuclear materials in quantities not sufficient to form a critical mass. # Table 12.1. Sources of Federal Regulations Transportation of Radioactive Materials (continued) 49 CFR 172 - Hazardous Materials Table and Hazardous Materials Communications Regulations 49 CFR 173 - Shippers-General Requirements for Shipments and Packagings 49 CFR 174 - Carriage by Rail 49 CFR 175 - Carriage by Aircraft 49 CFR 176 - Carriage by Vessel 49 CFR 177 - Carriage by Public Highway 49 CFR 178 - Shipping Container Specifications Title 10 U.S. Nuclear Regulatory Commission (10 CFR Part 71, "Packaging and Transportation of Eadioactive Material." Revised annually as of January 1) 10 CFR 71 - Packaging and Transportation of Radioactive Material Title 39 Postal Service (US Postal Service Publication No. 6, Dec. 1975 "Radioactive Material, as amended by US Postal Bulletin, June 30, 1983, pages 2-5.) Domestic Mail Manual, U.S. Postal Service Regulations, Part 124. (Postal Regulations for Transport of Radioactive Matter are published in U.S. Postal Service Publication #6, December 1975 and in the E.S. Postal Manual and in the U.S. Postal Manual.) #### Table 12.2 Definition of Radioactive Material For purposes of transportation, radioactive materials having a specific activity not exceeding two nanocuries per gram (0.002 \(\mu Ci/gm \)) are not subject to regulation in transportation. This is, however, a "de minimus" level which applies only to transportation. For purposes of licensing during use and possession, such materials may still be subject to regulation by NRC or an Agreement State. Safety during the transport of radioactive material is achieved principally by the use of proper packaging, considering the type, quantity and form of the material, and by limitation of the level of radiation from the material. Much less reliance is placed on operational or carriers controls. In establishing the proper type of packaging and activity content limitation within the package, the following factors must therefore be considered: - a. the type of material, e.g., the radionuclide; - b. the quantity of radioactivity; and - c. the form of the material, e.g., whether in: - 1. Special form; or - 2. Normal (non-special) form. Special Form and Normal Forms of radioactive material are illustrated in Figure 12.1. #### Table 12.3 Quantity Limits and Packaging After considering the type, quantity, and form of the radioactive material, the appropriate packaging and limitation of the activity content of such packaging can then be established. Packaging types generally fall within one of the following broad types: Type A (Figure 12.2) Type B (Figure 12.2) Excepted or exempt Strong Tight # Table 12.4 A,/A, System for Limiting Package Activity Content Prior to July 1983, the regulations utilized a "transport group" system to establish activity content limits of packages. Under the old system, each radionuclide was assigned to one of seven transport groups. The activity limit of that material in normal form was the limit for the group, which was based on the most radioactive member of the group. For special form materials, the Type A limit was the same for all nuclides -- 20 curies. After the A₁/A₂ system each radionuclide is assigned an A₁ and A₂ value. The A limit, based on external radiation considerations is the type A limit for that nuclide in special form. The A₂ limit, based on radiotoxicity, is its limit in Type A packaging, when in normal form. The A₁/A₂ values are used to derive limits for excepted (limited) quantities, radioactive articles (devices), and low specific activity (LSA) materials. Quantities exceeding A₁ or A₂ are Type B. The table below lists typical A₁/A₂ limits for several common nuclides. Table 12.4 Examples of A_1/A_2 Limits | Symbol of Radionuclide | Element and
Element Number | A, (C1)
(Special Form) | A ₂ (Ci)
(Normal Form) |
------------------------|-------------------------------|---------------------------|--------------------------------------| | ¹⁴ c | Carbon (6) | 1000 | . 60 | | 137 _{Cs} | Cesium (55) | 30 | 10 | | 99 _{Mo} | Molybdenum (42) | 100 | 20 | | 235 _U | Uranium (92) | 100 | 0.2 | | 226 _{Ra} | Radium (88) | 10 | 0.05 | | ²⁰¹ Pb | Lead (82) | 20 | 20 | | 239 _{Pu} | Plutonium (94) | 2 | 0.002 | | ³⁵ s | Sulfur (16) | 1000 | 60 | | ⁶⁰ co | Cobalt (27) | 7 | 7 | | 90 _{Sr} | Strontium (38) | 10 | 0.4 | | 241 _{Am} | Americium (95) | 8 | 0.008 | | 192 _{Ir} | Iridium (77) | 20 | 10 | #### Table 12.5 Types of Packaging Figure 12.2 is an illustration of "Typical Type A Packaging Schemes." Type A packaging is that which must be designed in accordance with the applicable general packaging requirements as prescribed in the regulations (Sections 173.24, 173.411, 173.412), and which must be adequate to prevent the loss or dispersal of its radioactive contents and to maintain its radiation shielding properties if the package is subjected to normal conditions of transport. The regulations prescribe (Section 173.465) the performance criteria to simulate normal and rough handling conditions of transport. Typically, the Type A packaging prescribed in the regulations is the performance-based DOT Spec. 7A (Section 178.350) Type A general packaging for which each shipper must make his own assessment and certification of the particular package design against the performance requirements. The regulatory framework, therefore, provides for the use of Type A packaging without prior specific approval by DOT of the package designs via the use of DOT Spec. 7A performance specifications. Additionally, foreign-made Type A packages are acceptable internationally, provided they are so marked as Type A and comply with the requirements of the country of origin. It should be noted that the shipper of each DOT Spec. 7A is required to maintain on file for at least one year after the latest shipment, and be prepared to provide to DOT a complete certification and supporting safety analysis demonstrating that the construction methods, packaging design, and materials of construction are in compliance with the specification (see Section 173.415). The information in this file must show, through any of the methods given in Section 173.461, that all the requirements of Sections 173.24, 173.463 and 173.465 are met. The file must also relate the contents of the package(s) being shipped to the contents which were used for testing purposes. Except for a limited number of specification Type B packagings (e.g., DOT-6M) described in the DOT regulations, all Type B package designs require PRIOR APPROVAL of the U.S. Nuclear Regulatory Commission or Department of Energy (DOE). (See Section 173.471 for standard requirements and conditions pertaining to NRC approved packages and Section 173.7 for DOE certified packages.) "Type B Packages," "Highway Route Controlled Quantities," and "Fissile Radioactive Materials" present more unusual and specific problems for packaging and carrier's operational controls. These materials are additionally controlled by the specific packaging standards as promulgated by the Nuclear Regulatory Commission in Title 10 CFR Part 71. Operational and administrative requirements for "highway route controlled quantities" (formerly called "large quantities") are prescribed in 173.403 and 177.825. Type B Packaging (see Figure 12.2), must meet the general packaging requirements and all of the performance standards for Type A packages. In addition, it must withstand certain serious accident damage test conditions. After the tests, there must be only limited loss of shielding capability and essentially no loss of containment. The performance criteria which the package designer must use to assess Type B packaging against these empirically established accident damage test conditions of transport are prescribed in the Fuclear Regulatory Commission regulations (10 CFR 71.73) and include the following: - 1. A 30-foot free drop onto an unyielding surface. - 2. A puncture test which is a free drop (over 40 inches) onto a six-inch diameter steel pin. - 3. Thermal exposure at 1,475°F for 30 minutes. - 4. Water immersion at 3 ft. depth for eight hours (for fissile materials packaging only). - 5. Water immersion at 50 ft. for eight hours. ## Table 17.6 Limited Quantities, Instruments and Articles The A, and A, values are also used as a basis for defining the package quantity limits for limited quantities and both the item and package limits for radioactive instruments and articles, as illustrated below. Packages containing materials within these quantity limits are excepted from some of the requirements which apply to Type A packages. These exceptions include not having to provide specification packaging, shipping papers, certification, marking or labeling. However, there are a number of conditions which the limited quantity, instrument or article must meet. They include: - 1. Activity limits per package and, if appropriate, per instrument or article; - 2. The materials must be packed in strong, tight packages that will not leak ANY of the radioactive material during conditions normally incident to transportation; - 3. The radiation level at any point on the external surface of the package cannot exceed 0.5 millirem per hour; - 4. The external surface of the package must be free of significant removable contamination; - 5. For instruments or articles, the radiation level at 4 inches from any point on the surface of the unpackaged instrument or article may not exceed 10 millirem per hour; and - 6. A prescribed description of the contents on a document which is in or on the package or forwarded with it. Table 12.6 Limited Quantities, Instruments and Articles (continued) | Nature of Contents— | Instruments ar | Materials | | |---|---------------------------------|---------------------------------|---------------------------------------| | | Instrument and article limits / | Package limits | Package limits | | Solids | | | | | Special form | 10 ⁻² A ₁ | A | 10 ⁻³ A ₁ | | Other forms | 10 ⁻² A ₂ | A ₂ | 10 ⁻³ A ₂ | | Liqu ids | | | | | Tritiated water < 0.1 Ci/liter 0.1 Ci to 1.0 Ci/l >1.0 Ci/liter | -
- | - | 1,000 curies
100 curies
1 curie | | Other liquids | 10 ⁻³ A ₂ | 10 ⁻¹ A ₂ | 10 ⁻⁴ A ₂ | | Cases | | | | | Tritium ² | 20 curies | 200 curies | 20 curies | | Special form | 10 ⁻³ A, | 10 ⁻² A ₁ | 10 ⁻³ A, | | Other forms | 10 ⁻³ A ₂ | 10 ⁻² A ₂ | 10 ⁻³ A | - 1/ For mixture of radionuclides see Section 173.433(b). - 2/ These values also apply to tritium in activated luminous paint and tritium absorbed on solid carriers. Refer to Sections 173.421 through 173.424 for the complete requirements pertaining to these materials. The U.S. Postal Service has revised its rules (U.S. Postal Service Publication No. 6, Dec. 1975 as amended June 30, 1983.) for mailable radio-active materials. The mailable amounts of material are now (since July 1983) one-tenth the values listed above. Other additional restrictions apply to mailable materials and the Postal Regulations should be consulted for complete specifications. #### Table 12.7 Low Specific Activity (LSA) Materials The levels of radioactive materials packaging and methods of limiting activity contents during transport, as described previously except for the "deminimus" definition of .002 uCi/gm all have one common characteristic, e.g., limitation by total activity content of the package. There is another extremely important transport classification for radioactive materials, e.g., "Low Specific Activity", or "LSA" which is controlled and limited principally on a specific activity, e.g., activity per unit of weight basis. Historically the LSA category was originally developed and premised on a basis of imposing less stringent packaging and shipment requirements on radioactive materials deemed to pose much less risk and were presumably "inherently safe". The categories of LSA have generally included solids, limited either on the specific activity basis or by name, tritiated water and surface contaminated objects. Looking at the most significant of these categories further; i.e., solids: Solid LSA materials are limited to those in which the activity must be essentially uniformly distributed and in which the estimated average concentration per gram of material does not exceed: - 1. 0.0001 millicurie of radionuclides for which the A_2 quantity is not more than 0.005 Curies; - 2. 0.005 millicurie of radionuclides, for which the A₂ quantity is more than 0.05 Curies, but not more than 1 curie; or - 3. 0.3 millicurie of radionuclides for which the A_2 quantity is more than 1 curie. In the original derivation of LSA limits for solids in the international regulations, inhalation of dispersed airborne material was considered, and for modeling purposes it was assumed that the airborne materials at a very dusty (10 mg/m) toncentration was inhaled at the breathing rate of 2 m/h for a one-half how exposure resulting in a 10 mg uptake. Little reliance was placed therefore on packaging requirements per se. More recently, the modeling and assumptions for solid LSA materials have been under extensive reexamination by IAFA as well as DOT/NRC. It is anticipated that in the future proposed changes to LSA requirements will be published, aimed principally at establishing more realistic models so as to control hazards of beta-emitting as well as Gamma-emitting materials. It is likely that future regulations for ISA may include limitations on activity of such materials in packages, as well as more precise packaging prescriptions. Solid LSA wastes include a very wide range of fuel cycle, industrial and institutional wastes; contributing a major portion of the materials which are transported from waste generator facilities to the commercial low level waste burial
sites. #### Shipment Requirements for LSA Materials Under the BET regulations in 49 CFR, the specific shipment requirements for LSA materials depend upon the type of vehicle involved in the shipment: o Nonexchusive use shipments - "essentially Type A packages" The first method, "nonexclusive use" transportation, requires that the material be transported in essentially a Type A package. "Essentially a Type A" package means a package that must survive the physical tests, such as the drop and compression tests for Type A packages - but which is expected from some of the general Type A requirements. The actual test requirements are found in Section 173.465. Although the packages are excepted from certain design requirements, their integrity must be equal to a Type A. # o Exclusive use - "strong, tight package" LSA materials which are transported by conveyances assigned for the "exclusive use" of the consignor may be shipped in packages that are of less rigorous construction. Users of the exclusive use provision MUST ENSURE that there will be no leading or unloading of the material except under the direction of the consignee or consignor. The limitation on loading and unloading, plus the requirement that the material be in exclusive use, safely allows the exception from certain packaging test requirements. Exclusive use LSA, therefore, is allowed to be made in the so-called "strong, tight package." There are no specific test requirements for the strong, tight packages. However, a performance criteria must be met — there can be no release of radioactive content during transportation and like any other package of hazardous material, the requirements of Section 173.24 must be met. Materials which are consigned as exclusive use LSA shipments MUST have the packages marked "Radioactive LSA." And the vehicle on which they are being transported MUST be placarded with the RADIOACTIVE MATERIAL placard. # Certified Type A Packages for LSA In general, approval of Type A package designs, by a regulatory agency is not usually required. The shipment of Type A quantities of radioactive material is more frequently made in designs conforming to DOT Specification 7A. This specification is based solely on the performance test requirements of the regulations. Shippers utilizing such packagings are however required to maintain documentation of the results of their safety analyses of the design against the regulatory criteria. A major exception to the above involves shipments by USNRC licensees of LSA materials in packages wherein the activity exceeds a Type A quantity. Ordinarily, under DOT regulations, LSA materials are not limited only on the basis of specific activity of the material, and not on total package activity. However, due to the provisions of 10 CFR Part 71, the shipment of LSA in packages where the quantity exceeds Type A requires the use of certified Type A sackaging. This certification is obtained by submittal of an application which addresses the results of the evaluation of the package against the Type & conditions, e.g., normal conditions of transport. Effectively therefore, Type B quantities of LSA material are required to be in NRC-certified Type A packagings. This exception is extremely important to fuel cycle waste shipment considerations. The NRC has certified several dozen such Type A designs for LSA shipments. These are listed in the NRC Directory of certified packages. (NUREG-0383 "Directory of Certificates of Compliance for Ramoactive Material Packagings," revised annually in three volumes). They each are similar in design and appearances to Type B packages (see Figure 12.2), but are not required to be subjected to the Type B tests. #### Table 12.8 Fissile Radioactive Materials In addition to considerations for the radioactivity content, a shipper of radioactive materials which are also fissile, i.e., capable of sustaining a nuclear chain reaction, such as enriched uranium, plutonium, or U-233; must take account in the packaging design certain additional requirements which are intended to ensure against accidental nuclear criticality during transport of the material. These specific criteria and requirements are addressed in DOT and NRC regulations. Again, as in the case of Type B non-fissile package designs, only a few "DOT Specification" packages for fissile radioactive materials are listed in 49 CFR, e.g., DOT-6L, DOT-6M, and DOT 20PF. Other designs which have been specifically approved and certified by NRC are listed in the PaC Directory of Certified Packages. (NUREG-0383 "Directory of Certificates of Compliance for Radioactive Material Packaging," revised annually in three volumes). For purposes of control of nuclear safety during transport, each design is assigned a "fissile Class" number of 1, 2, or 3, which is an indication of the degree of control to be exercised during transport to assure nuclear safety of the shipment. These controls are listed in the Table below. # Table 12.8 Shipment Controls for Fissile Radioactive Materials (Section 173.455) - 1. Fissile Class I Packages may be transported in unlimited numbers (Transport Index*is based only on external radiation levels). - 2. Fissile Class II Number of packages limited by aggregate maximum of transport indexes of 50 (50 unit rule). No single package may exceed a transport index of 10. Transport index shall be based on criticality or external radiation level basis, whichever is most restrictive. - 3. Fissile Class III Shipments of packages which do not meet the requirements of Fissile Class I or II. Controlled by specific arrangements between the shipper and carrier. (See Section 173.457(b)). - Exposure rate in mrem/h at three feet from external surface of package. #### Table 12.9 Radiation Limits The regulations set limits on the external radiation on packages and in some cases on the vehicles transporting radioactive materials packages. These limits, which depend upon whether the packages are transported as non-exclusive use (mixed freight) or as exclusive use, are listed below: #### Table 12.9 Radiation Level Limits (173.441) # Packages Transported As Non-Exclusive Use: At Surface: 200 mrem/hour At 1 meter from package surface: 10 mrem/hr. # Packages Transported As Exclusive Use At package surface: 1000 mrem/hour (in closed transport vehicle only) 200 mrem/hour (un open vehicle) At 2 meters (6.6 ft.) from lateral surfaces of vehicle: 10 mrem/hour In occupied area of vehicle: 2 mrem/hour At outer surfaces of transport vehicle: 200 mrem/hour. #### Table 12.10 Contamination Limits (173.443) Regulatory limits are also set for the allowable removable surface contamination on packages, as measured on wipe (smear) samples. These limits are listed below: Table 12.10 Removable External Radioactive Contamination Limits Removable External Radioactive Contamination Limits | Contaminant | Maximum
permissible limits | | |---|-------------------------------|---------------------| | | uCi/cm ² | dpm/cm ² | | Beta-gamma emitting radionuclides; all radionuclides with half-lives less than ten days; natural uranium; natural thorium; uranium-235; uranium-238; thorium-232; thorium-228 and thorium-230 when contained in ores or physical concentrates | 10- ⁵ | 22 | | All other alpha emitting radionuclides | 10-6 | 2.2 | In applying the limits of this table and the assessment of the surface contamination of a package, sufficient measurements (wipes) must be taken in the most appropriate location of a package surface so as to yield a representative assessment of the non-fixed contamination levels. Averaging of wipe samples may be done only within any given 300 cm area that is wiped. For packages transported as exclusive use, the removable contamination should not exceed ten times the levels prescribed here. Each transport vehicle used to transport packages with these higher units must be surveyed after use. Before release for other use, the vehicle must not be returned to service until the non-fixed contamination levels meet the above limits. #### Table 12.11 Communications Requirements The regulations contain a number of "communications" requirements which are intended to convey certain hazard characteristic information to package handlers, carrier personnel, receivers, and the general public. These requirements include warning labels, vehicle placarding, and shipping paper descriptions. #### Warning Labels (372.403) Each package of radioactive material, unless excepted, must be labeled on two opposite sides, with a distinctive warning label. Each of the three label types bears the unique trefoil symbol (Figure 12.3). The label alerts persons that the package contains radioactive materials and that the package may require special handling. A label with an all white background color indicates that the external radiation level is low and no special handling is required. If the upper half of the label is yellow, the package may have an external radiation level or fissile properties requiring consideration during transportation. If the package bears a yellow label with three stripes, the transport vehicle must be placarded RADIOACTIVE. Placarding is discussed in more detail below. The criteria which the shipper must consider in choosing the appropriate label are listed below: Other package labels are illustrated in figures 12.4 and 12.5. A vehicle placard is shown in figure 12.6 and its placement illustrated in figure 12.7. For all labels, vertical bars on each label are in red. Each label is diamond-shaped, four inches on each side, and has a black solid-line border one-fourth inch from the edge. The background color of the upper half (within the black line) is white for the "I" label. It is yellow for the "II" and "III" labels. Table
12.6 Radioactive Materials Packages Labeling Criteria Section 172.403 | Transport Index (T.I.) | Radiation Level at
Package Surface
(RL) | Fissile
Criteria | Label
Category b | |------------------------|---|--|---------------------| | N/A | RL ≤ 0.5 millirem per
hour (mrem/h) | Fissile Class I
No Fissile Class
II or III | White - I | | T.I. ≤ 1.0 | 0.5 mrem/h < RL < 50 | Fissile Class I,
Fissile Class II
with T.I. < 1.0,
No Fissile Class III | Yellow - II | | 1.0 < T.I. | 50 mrem/h < RL | Fissile Class II
with 1.0 < T.I.,
Fissile Class III | Yellow - III | Exposure rate in \mathtt{mrem}/\mathtt{h} at three feet from external surface of package. #### Table 12.12 Shipping Papers Like any shipment of regulated hazardous materials in commerce, each shipment of radioactive material must be accompanied by a properly completed and shipper-certified shipping paper (also known as bill of lading, air bill, cargo manifest, etc.) For limited quantities and excepted radioactive articles, this shipping paper/certificate may be a specially worded notice which may be in or on the package (i.e., packing list), or separately accompanying the shipment. The elements of information which must be included, as applicable, on shipping papers includes: - (1) Proper shipping name from Section 172.101; - (2) Hazard class (see Section 172.202(a)(2)), hazard class from Column 3, Section 272.101, except when the hazard class is contained in the shipping name; - (3) Identifization number (see Section 172.202(a)(3) from Column 3A, Section 172.101): - (4) Net quantity of material by weight or volume as stated in Sections 172.202(m)(4) and (c). For most radioactive materials packages, it is not required to list the weight or volume. The requirements of Section 172.203(d) provide better indications of potential hazards and controls required. These requirements include the package contents as measured in curies and the transport index. A listing of weight or volume measurements for radioactive materials is usually needed only for establishing transportation charges; - (5) Radiomclide(s) contained in package (abbreviations are allowed). For a mixture of radionuclides, only those radionuclides which comprise 12 or more of the total activity in the package must be listed; Any package commaining a "Highway Route Controlled Quantity" (173.403) must be labeled as Radioactive Yellow - III. - (6) Physical and chemical form of material, or statement that the material is "special form" (if it is special form). A generic description of material, such as protein, carbohydrate, enzyme, or organic salt, is authorized if exact chemical form is difficult to specify; - (7) Activity in ceries (Ci), millicuries (mCi), or microcuries (uCi). If the package cantains a "Highway Route Controlled Quantity," those words must also be shown on the shipping papers; - (8) Category of RADIOACTIVE labels applied to package; - (9) Transport index of the package if labeled RADIOACTIVE Yellow-II or RADIOACTIVE Yellow-III; - (10) The informatism required in Section 172.203(d)(I)(vi) must be included if the shipmest is "fissile" radioactive material; - (11) The identification markings shown on the package must appear on the shipping paper if the package is approvied and certified by the Nuclear Regulatory Commission or the Department of Energy, OR is certified by DOT or other Sational Competent Authority for international shipment. - (12) Other information as required by the mode of transportation or subsidiary hazard of the material. (See Section 172.203). The regulations require that certain specific descriptive information must be included on shipping papers. While there is no specification for shipping paper format, the first three entries of the description must be in a specific order (see above). Other descriptive information is allowed, such as the functional description of the product. However, other information must not confuse or detract from the required descriptions of the hazardous materials. Table 12.12 Most Commenty Used Shipping Names for Radioactive Material (From Hazardous Materials Table, Section 172.101) | Radioactive Material, Limited Quantity, n.o.s. | UN 2910 | |--|---------| | Radioactive Material, Instruments, and Articles | UN 2911 | | Radioactive Material, Fissile, n.o.s. | UN 2918 | | Radioactive Material, Low Specific Activity or LSA, n.o.s. | UN 2912 | | Radioactive Material, Special Form, n.o.s. | UN 2974 | | Radioactive Material, n.o.s. | UN 2982 | | Dranium Hexafluoride, Fissile (Containing more than 17 | | | U-235) | UN 2977 | | Uranium Hexafluoride, Low Specific Activity | UN 2978 | ARefer to Section E72.101 for other proper shipping names. b n.o.s. means "not otherwise specified." CUnderlined words are not part of the proper shipping name. Figure 12.1 Forms of Radioactive Materials for Transport From: A Review of the Department of Transportation (DOT) Regulations For Transportation of Radioactive Material (Summer 1980) # "Special Form" R.A.M. (173.403 (z) and 173.469 (a)) May Present a Direct Radiation Hazard if Released From Package, but Little Hazard Due to Contamination "Special Form" R.A.M. May Be "Natural" Characteristic, i.e., Massive Solid Metal, or "Acquired" Through High Integrity Encapsulation # Normal Form Radioactive Materials 49 CFR 173.403(s) Normal Form Materials May Be Solid, Liquid or Gaseous and Include any Material Which Has Not Been Qualified as Special Form Type A Package Limits are A2 Values Waste Material in Plastic Bag Liquid in Bottle Within Metal Container Powder in Class or Plastic Bottle Figure 12.2. Types of Packaging (From A Review of the Department of Transportation (DOT) Regulations for Transportation of Radioactive Materials (Summer 1980)) Type A All packaging design is directed at preventing the release of the radioactive cantents and damage to the radiation shielding so that a severe radiological hazard will not develop. Because of the smaller quantities of material permitted in Type A packages, accidents that might cause damage to such packages would not be likely to result in serious radiation hazards. Therefore such packaging must only withstand moderate degrees of stress. These include conditions of heat, cold, reduced air pressure, vibration, impact, water, drop, penetration, and compression. The majority of radioactive material shipments are made in Type A packages. # TYPICAL TYPE A PACKAGING PACKAGE MUST WITHSTAND NORMAL CONDITIONS (173.398(B)) OF TRANSPORT ONLY WITHOUT LOSS OR DISPERSAL OF THE RADIOAETIVE CONTROL CONTENTS. FIBERBOARD BOX WOODEN BOX STEEL DRUM TYPICAL SCHEMES DOT SPECIFICATION 7A #### Type B Type B packages are designed for transport of greater quantities of material. Since the potential for hazard resulting from damage to this type of package would be greater than that from a Type A package, there are additional structural design requirements. In addition to meeting standards for Type A packages, Type B packaging must withstand puncture, drop, thermal, and water immersion stresses that might be experienced under actual or hypothetical transportation accident conditions. # TYPICAL TYPE B PACKAGING SCHEMES PACKAGE MUST STAND BOTH NORMAL (173.398(BI) AND ACCIDENT (173.398(CI) TEST CONDITIONS WITHOUT LOSS OF Figure 22.3 Labels Required on Exterior Package Three different labels are used on packages for radioactive material (see above). The required label is usually determined by the external radiation level or, in some cases, the type and quantity of radionuclide within the package (see Labeling Criteria table). Package labels must specify the radionuclide (contents) and quantity (curies). In addition, Yellow II and Yellow III labels contain the transport index, which is equal to the maximum radiation level at 3 feet from the package or, for packages containing fissile material, the degree of nuclear safety control required. # Figure 12.4 Radioactive Material Warning Labels (From DOT/RSPA/MTB-79/8) All packages of radioactive material, with the exception of those containing Limited Quantities or Low-Specific-Activity materials (which would present no severe hazard if involved in an accident), must bear two identifying warning labels affixed to opposite sides of the outer package. Limited shipments do not require outer package labeling; however, they, like all shipments of radioactive material, must have standard yellow and magenta radiation warning labels on the inner containers. | CAUTION | |-------------------------| | | | RADIOACTIVE
MATERIAL | | 6701 | | MORE | | Olividor ICOM | | | | A | | MT | | PROM MEANTONS | | | Warning Labels Figure 12.5 Empty Label (From DOT/RSPA/MTB-79/8) Reusable shipping containers are frequently transported in an empty, but possibly internally contaminated condition. When in transit, these containers must bear the EMPTY label shown below. There is minimal hazard from containers displaying this label. **EMPTY** Typical label required to indicate empty shipping container. # Figure 12.6 Vehicle Warning Placards (From DOT/RSPA/MTB-79/8) #### Placards The <u>carrier</u> must apply the RADIOACTIVE placard to the transport vehicle (rail or highway) if ANY radioactive material package on board bears a "Radioactive YELLOW-III" label (Section 172.440). The format for the placard is illustrated in Figure 12.7. The requirements for placarding are in Section 172.504 and Table 1 footnotes of that Section. Figure 12.6 (The background color for the black trefoil in the upper half of this $12^{\prime\prime\prime}$ x $12^{\prime\prime\prime}$ placard is yellow.) Vehicles transporting ANY package which contains a highway route controlled quantity must display the above placard upon the square white background with black border as specified in Section
172.507. For shipments of LSA materials in exclusive-use vehicles, the shipper is required to placard the transport vehicle, even though the packages of LSA within the vehicle are excepted from labeling requirements. Figure 12.7 Diagrammatic representation of placard location on vans and flatbed trucks (From DOT/RSPA/MTB-81/4) Figure 12.7 is a guide to placement of placards on motor vehicles. Where placards are impractical, i.e., on aircraft or water vessels, they are not required to be displayed. Post Office Address Telephone Regional Coordinating Office Upten, L.I., New York 11973 (516) 345-2200 1 Brookhaven Area Office P.O.Box E, Oak Ridge, Tennessee 37830 (615) 576-1005 2 Oak Ridge Operations Office (615) 525-7885 3 Savannah River Operations Office P.C Box A, Aiken, S.C. 29801 (803) 725-3333 4 Albuquerque Operations Office P.O. Box 5400, Albuquerque, N. M. 87115 (505) 264-4667 SEE S. Cass Ave., Argonne, Illinois 60439 (312) 972-4800 5 Chicago Operations Office Off Duty Hrs. (312) 972-5731 P.B.Box 2106, Idaho Falls, Idaho 83401 (208) 526-1515 6 Idaho Operations Office 13至 Broadway, Oakland, California 94612 (415) 273-4237 P.O.Box 550, Richland, Washington 99352 (509) 942-7381 Figure 12.8 Department of Energy regional coordinating offices for radiological assistance and geographical areas of responsibility. Region I, Office of Inspection and Enfacement, USNRC 631 Park Avenue, King of Prussis, Panaphyania 19406 Region II, Office of Inspection and Entercament, USNRC 230 Paachtree Street, N.W., Suite 818, Atlanta, GA 30303 Region III, Office of Inspection and Editionment, USNRC 799 Roosevelt Road, Glan Ellyn, Illinois0137 Region IV, Office of Inspection and Educement, USNRC 611 Ryan Plaza Drive, Suita 1000, Arlington, Texas 76012 Region V. Office of Inspection and Enlacement, USNRC 1990 N. California Blvd., Suite 202, Water Creek Plaza Walnut Creek, California 94596 Address 7 San Francisco Operations Office **8** Righland Operations Office | Talephone | | | | |----------------|-----------------|--|--| | Daytime | Nights/Holidays | | | | (215) 337-1150 | (215) 337-1150 | | | | (404) 526-4503 | (404) 526-4503 | | | | (312) 858-2660 | (312) 858-2660 | | | | (817) 334-2841 | (817) 334-2841 | | | | (415) 486-3141 | (415) 486-3141 | | | Figure 12.9 United States Nuclear Regulatory Commission regional offices. # APPENDIX 3 ANALYTICAL METHODS FOR WASTE CHARACTERIZATION Date: December 15, 1987 Revision No. 1 Section C #### C-5 ANALYTICAL METHODS It is the intention to perform the required analytical work on site at Rocky Flats Plant. The analytical laboratories have developed a series of in-house procedures referred to as "L-Procedures." The guidelines for developing and maintaining quality control within the procedures is described in Section C-7. Where appropriate, procedures presented in SW-846 are followed. Rocky Flats reserves the right to send samples offsite for analysis or to substitute equivalent methods. Table C-4 shows the methods used in analyzing nonradioactive wastes. Slightly different methods are used for low-level contaminated wastes. These procedures are presented in Table C-5. The methods used for fingerprint analysis are shown in Table C-6. Revision No. 1 Section C TABLE C-4 ANALYTICAL METHODS FOR NON RADIOACTIVE WASTES | Analyte | Instrument | | Method | |------------------------|---|------------------------------------|------------------------------| | HSL Inorganic | ICP
Extraction
Extraction
Analysis | aqu.
solids | 3010
3050
6010 | | HSL Inorganic | AA
Extraction | solids | 3000 series
7000 series | | HSL Volatile | GC-MS | | 8240 | | HSL Base/Neutral/Acid | GC-MS Extraction Extraction Extraction Analysis | liqu/liqu
soxhlet
sonication | 3510
3540
3550
8270 | | Pesticides and PCB | Analysis | | 8080 | | EP Toxicity | | | 1310 | | EPTOX Leachate | AA | | 7000 series | | Reactivity:
Cyanide | | | 7.3.3.2
and 9010 | | Hydrogen Sulfide | | | 7.3.4.2 | | Corrosivity | pH meter | | 9040 | | Ignitability | Setaflash
IR-Gas-Snif | f | D 3278-82
L-6211 | Revision No. 1 Section C TABLE C-5 ANALYTICAL METHODS FOR LOW LEVEL WASTES | Analyte | Instrument | Method | |--|---|---| | HSL Inorganic | ICP Extraction aqu. Analysis except Na,K,Hg and Se Sodium | 3010
6010
7770 | | | Potassium
Mercury
Selenium | 7610
7470
Sodium Boro-
hydride | | HSL Volatile and HSL Base/Neutral/Acid | Extraction | * | | HSL Volatile | GC-MS | 8240 | | HSL Base/Neutral/Acid | GC-MS | 8270 | | EP Toxicity | | 1310 | | EPTOX Leachate | ICP | 6010 | | Reactivity:
Cyanide | | 7.3.3.2
w/ Draeger tube | | Sulfide | | 7.3.4.2 | | Corrosivity | pH meter | 9040
9045 | | Ignitability | Pensky-Martens | 1010
(ASTM D93-80) | ^{*} As described in: "Preparation of Radioactive Mixed Waste Samples for Measurement of RCRA Organic Compounds." Date: December 15, 1987 Revision No. 1 Section C #### TABLE C-6 # ANALYTICAL METHODS FOR FINGERPRINT ANALYSIS <u>Test</u> Method Appearance Physical identification, color, viscosity, phases and odor рН Electrode on pH paper Combustibility Match test or Pensky Martens closed cup tester Specific Gravity Hydrometer Miscibility 50/50 mixture with water Reactivity 50/50 mixture with water or other waster Chlorinated Solvents Test kit or Beilsten test PCB Test kit Cyanide Draeger tube Total Alpha L-6114 Aqueous L-6194 Oils ### APPENDIX 4 QUALITY ASSURANCE/QUALITY CONTROL FOR WASTE CHARACTERIZATION Date: December 15, 1987 Revision No. 1 Section C #### C-7 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) Quality Engineering and Control, an organization not associated with Waste Management Operations, has the responsibility for quality assurance. This organization will be responsible for (1) reviewing analytical results bias to determine validity of information, (2) conducting and documenting periodic system performance audits, (3) use of blind or performance samples in the sampling/analysis process, (4) documenting observed problems with recommendations directly to Waste Operations for resolution and, (5) ensuring that the requirements of the Laboratories Quality Assurance Program are implemented, revised periodically (at least annually) reviewed and appropriate. Quality Engineering and Control is responsible for ensuring that the following procedures are implemented during the sampling and analysis program for waste characterization (Section C-2). #### C-7.1 Sample Collection #### C-7.1.1 Trip Blank A full set of sample containers glassware or plastic will be filled with laboratory grade water prior to beginning sampling each day, taken to the sampling site, and submitted for analysis as a routine sample. Sample analysis is performed for the sum of all the analytes required for samples for the day of the trip Revision No. 1 Section C blank. The purpose of this sample is to detect contaminant contributions form the glassware, and/or plastic containers. Trip blanks will not be taken when such activities will increase personnel chemical or radioactive exposure above ALARA levels. This applies to samples taken in glove boxes or other controlled atmosphere environments. #### C-7.1.2 Field Blanks Field Blanks will consist of laboratory-grade water exposed to the sampling environment. A container of water will be opened at the sampling location, opened and poured into the sample containers utilizing the appropriate sampling devices. The sampling devices will be decontaminated prior to obtaining the field blank following the same procedure as used for a routine field sample. Field Blanks will be taken every time a field sampling procedure is changed, when the sampling personnel are changed, or once for every 20 routine field samples, whichever is more frequent. This frequency may be decreased when disposable sampling equipment is used. Field blanks will mot be taken when such activities will increase personnel chemical or radioactive exposure above ALARA levels. this applies to samples taken in glove boxes or other controlled atmosphere environments. Field Blanks will be assigned a sample number similar to that of a routine field sample. The identification of field samples will Revision No. 1 Section C not be known to the laboratory analyst. #### C-7.1.3 Field Duplicates Ten percent (10%) of the waste stream samples collected will be sampled twice to provide duplicate samples. The field sampling team will use a random procedure to determine when duplicates will be taken. Duplicates will be assigned a number similar to that of a routine sample and submitted blind to the analytical laboratory. The duplicates are collected, handled, and analyzed as separate samples (including decontamination of sample collection equipment between collections). The duplicate is an indicator of the representativeness of the sampling procedure. #### C-7.2 Laboratory QA/QC Program This subsection of the Quality Assurance/Quality Control Program briefly describes the organization and guidelines used to produce reliable analytical data in the RFP Quality Laboratories. A more detailed and comprehensive presentation of the Quality Laboratories' organization and quality assurance guidelines may be found in the QL Quality Assurance Program #### C-7.2.1 Organization The ultimate responsibility for the generation of reliable laboratory data rests with the laboratory management. Laboratory Revision No. 1 Section C management is vested with the authority to effect those policies and procedures to ensure data of acceptable quality. Laboratory management, as well as the Quality Assurance Coordinator and the Laboratory Quality Assurance/Quality Control Officer are ultimately responsible for the implementation of the established policies and procedures. They possess the authorities commensurate with their
responsibilities for the day-to-day enforcement and monitoring of laboratory activities. Laboratory management has the following responsibilities: - 1) Direct implementation of the Quality Assurance Program. - 2) Ensuring that their personnel are adequately trained to perform analyses. - 3) Ensure that equipment and instrumentation under their control are calibrated and functioning properly. - 4) Review and perform subsequent corrective action on internal and external audits. The Quality Assurance Coordinator and the Laboratory Quality Assurance/Quality Control Officer have the following responsibilities: - On-going review of individual Quality Assurance procedures. - 2) Providing assistance in the development and implementation of specific quality assurance plans for special analytical programs. - 3) Coordination of internal and external quality assurance audits. - 4) Coordination of Quality Assurance training. Date: December 15, 1987 Revision No. 1 Section C CO7890010526 - 5) Review special project plans for consistency with organizational requirements and will advise laboratory management and Waste Operations of inconsistencies. - 6) Overall coordination of the Quality Laboratories' Quality Assurance Program manual. - Review procedures and QA plans of any outside laboratory. #### C-7.2.2 Sample Management An organized, efficient sample management system is a necessary and critical foundation on which analyses of samples are based. Sample management includes document creation, bottle preparation, sample preservation, sample receipt, sample storage, chain-of-custody documentation, reporting, sample and records retention. Sample management is practiced as specified in <u>L-Procedure L-6002</u>, "Sample Administration - General Laboratory." Sample bottles will be prepared by the laboratory and made available to the sampling team. The bottles will be prepared according to the analysis plan procedures and will include sample preservatives appropriate to the analytes and matrices of concern. Samples received at the laboratories are inspected for integrity, and any field documentation is reviewed for accuracy and completeness. Chain-of-custody and sample integrity problems are noted and recorded during sample log-in. Waste Operations is informed of Revision No. 1 Section C any deficiencies and will advise the laboratory on the desired disposition of the samples. As each sample is received by the laboratory, it is assigned a unique sequential sample number which will identify the sample in the laboratory's internal tracking system. References to a sample in any communication will include the assigned sample number. #### C-7.3 Analytical System #### C-7.3.1 Instrument Maintenance Instruments will be maintained in accordance with the manufacturer's specifications. More frequent maintenance may be dictated dependent on operational performance. Instrument logs will be maintained to document the date and type of any maintenance performed, and rationale for maintenance. Contracts on major instruments with manufacturers and service agencies, may be used to provide routine preventive maintenance and to ensure rapid response to emergency repair service. #### C-7.3.2 Instrument Calibration Before any instrument can be used as a measurement device, the instrumental response to known reference materials must be determined. The manner in which the various instruments are calibrated is dependent on the particular instrument and the Date: December 15, 1987 Revision No. 1 Section C intended use of the instrument. All sample measurements will be made within the calibrated range of the instrument. After calibration, satisfactory instrument response is verified by use of calibration check standards. Failure to confirm concentrations of such standards will result in recalibration of the instrument. All data on calibration and standards will be kept in the operating log of the instrument. ### C-7.3.3 Personnel Training Prior to conducting analyses on an independent basis, analysts are trained by experienced personnel in the complete performance of an analytical method. The analyst is required to independently generate data on several methods and/or matrix spikes to demonstrate proficiency in that analytical method. The type of data to be generated will be dependent on the analytical method to be performed. Results of this "certification" are then reviewed for adequacy. Since method blanks and method spikes are required routine samples in every lot of samples analyzed, performance on a day-to-day basis can be monitored by comparison with the original and cumulative data on similar samples. Laboratory management and the laboratory Quality Assurance/Quality Control Officer are responsible for ensuring that samples are analyzed by only competent analysts. Date: December 15, 1987 Revision No. 1 Section C #### C-7.3.4 Analytical Methods All analytical measurements are made using methodology appropriate for the specific purpose and performed according to a plan individually developed and optimized for each situation. The requirements of each problem are studied and thoroughly understood before hand, in order to ensure that the measurements planned will be aftequate both in kind, number, and quality. All measurements are made using standard methods, methods with peer recognition, methods developed in the specific laboratory, or those mandated by outside requirements. No method will be used for data output purposes until it is known to be applicable and competence has been acquired in its use. If or when it appears that available techniques are not adequate to solve a particular problem, the requester of the services is usually informed of any preliminary investigations or research required, including estimated costs in terms of laboratory time. To control routinely employed analytical laboratory analyses and avoid errors leading to unsatisfactory results, formal procedures are written to provide direction for those doing the work. Instructions for performing most routine analytical laboratory operations are provided in L-Procedures, also known as Analytical Laboratory Procedures. L-Procedures are developed and written by the Quality Laboratories' technical staff and apply to routinely performed analytical work. These procedures are reviewed prior to approval by laboratory Section C management and are subject to periodic audits. The L-Procedures for analytical methods are usually adaptations of SW-846. L-Procedures also cover other standard operating practices such as sample handling protocols, security procedures, and nuclear accountability practices. L-Procedures for analytical methods perform the following functions: - 1) Describe operations, materials, and equipment required. - 2) Serve as training guide for indoctrination and education of personnel. - 3) Identify potential hazards, safety requirements, and safeguards considerations associated with the procedure. - 4) Describe calibration and standardization procedures. - 5) Describe techniques for quality assessment of data (e.g., measurement control samples, replicate measurements, etc.). - 6) Describe sample preparation and handling. - 7) Describe data handling and calculations, including statistical analysis of the data and reporting of uncertainties. - 8) Provide a format or model for report generation if appropriate. For non-routine analysis investigations that are encountered infrequently, written procedures are not generated. The analytical methodology, in these cases, is based upon the analyst's knowledge and skill. The data from such work are supported by documentation of gmod laboratory practices and data verification steps. The control of written procedures and the policies for changing Revision No. 1 Section C procedures are defined in Procedure L-1000. Master copies of all qualified procedures are maintained by the managers of the laboratory groups to which the procedures apply. Working copies of approved procedures are distributed to the responsible managers and technical staff members. #### C-7.3.5 Reference Materials If possible, primary reference materials will be obtained from the National Bureau of Standards (NBS) or the U.S. Environmental Protection Agency (EPA). In the absence of available reference materials from these organizations, other reliable sources may be sought. When available reference materials will be used for instrument calibration, quality control spikes, and/or performance evaluations. Secondary reference materials may be used for these functions provided that they are traceable to an NBS standard or have been compared to an NBS standard within the laboratory. #### C-7.3.6 Reagents Laboratory reagents will be of a quality to minimize or eliminate background concentrations of the analyte to be measured. Reagents must also not contain other contaminants that will interfere with the analyte of concern. #### C-7.3.7 Corrective Actions When an analytical system is deemed to be questionable or out-of- Revision No. 1 Section C control at any level of review, corrective action is taken. If possible, the cause of the out-of-control situation is determined, and efforts are made to bring the system back into control. Demonstration of the restoration of a reliable analytical system will normally be accomplished by generating satisfactory calibration and/or quality control sample data. The major consideration in performing corrective action is ensuring that only reliable data are reported from the laboratory. #### C-7.4 Data Management #### C-7.4.1 Data Collection In addition to the data collected in the field and recorded on the chain-of-custody forms, data describing the processing of samples will be accumulated in the laboratory and recorded. Laboratory records may contain: - Date and time of processing - Sample numbers - Project (optional) - Analyses or operation performed - Calibration data - Quality control samples included - Dates of Analysis -
Concentrations/dilutions required - Instrument readings - Special observations - Analyst's signature #### C-7.4.2 Data Reduction Data reduction is performed by the individual analysts and consists of calculating results in samples from the raw data Date: December 15, 1987 Revision No. 1 Section C obtained from the measuring instruments. The complexity of the data reduction will be dependent on the specific analytical method and the number of discrete operations (extractions, dilutions, and concentrations) involved in obtaining a sample that can be measured. Copies of all raw data and the calculations used to generate the final results will be retained in the laboratory to allow reconstruction of the data reduction process at a later date. #### C-7.4.3 Data Review System reviews are performed at all levels. The individual analyst constantly reviews the quality of data through calibration checks, quality control sample results, and performance evaluation samples. These reviews are performed prior to submission of data to the laboratory management or designee. Laboratory management or designee will review the data for consistency and validity with other generated data and determine if program requirements have been satisfied. Unusual or unexpected results will be reviewed, and a determination will be made as to whether the analysis should be repeated. The Quality Assurance/Quality Control Officer independently conducts a complete review of results from randomly selected samples to determine if laboratory and program quality Date: December 15, 1987 Revision No. 1 Section C assurance/quality control requirements have been met. Discrepancies will be consistent with the limits of uncertainty inherent in the analytical method. Consequently, most analytical results will be reported to no more than two (2) significant figures. #### C-7.4.4 Data Archiving The laboratory will maintain on file all of the raw data, laboratory notebooks, and other pertinent documentation. This file will be maintained at the laboratory for a period of time consistent with RFP requirements. Data retrieval from archives may be handled only with the approval laboratory management. #### C-7.4.5 Data Reporting All data will be reported in a format approved by Laboratory Management and the Laboratory QA/QC officer. Data reports will include the following information: - Waste ID Number - Laboratory Sample Number - Sample Date - Extraction Date (if appropriate) - Analysis Date CO7890010526 Date: December 15, 1987 Revision No. 1 Section C - For each Analyte: Parameter Units Value Detection Limit Flags (where appropriate) Counting error (for radioactive parameters) - Laboratory Blank Results - Laboratory Spike Results When errors are detected in laboratory results, subsequent reports will clearly designate which results have been revised. #### C-7.5 Special Measurement - Control Programs In addition to internal laboratory Quality Assurance and Quality Control Programs, formal measurement control programs have been established and are administered by groups outside the laboratory. These programs provide for additional measurement quality assurance for data. #### C-7.5.1 Sample Exchange Programs There are three special sample exchange programs in place which are administered imdependent of the Rocky Flats operation. They are: - a) The Environmental Monitoring Surveillance Laboratory Exchange Program provides for radiological analysis control among approximately 200 environmental laboratories nationwide. - b) The U.S. Geological Survey Exchange Program addresses environmental pollutant monitoring parameters. This program involves 40 government agency laboratories. Revision No. 1 Section C The Environmental Protection Agency QA Laboratory Performance Evaluation Study is a quality assurance compliance check for the National Pollutant Discharge Elimination System (NPDES). Compliance with this program assures continuation of the DOE Discharge Permit for Rocky Flats Plant waste discharge. The Rocky Flats Plant Health, Safety, and Environment Department administers this program for the plant and is responsible for reporting all data. #### C-7.6 Standards Laboratory Measurement Control Programs #### C-7.6.1 Analytical Measurement Control The Standards Laboratory administers two formal measurement control systems for analytical laboratory measurements. The two systems, designated the Measurement Control System (MCS) and the Interactive Measurement Evaluation and Control System (IMECS), differ only in the method of collecting data. The MCS involves manual transcription of data that are eventually entered on a one-time basis into a computer program that produces one specific report. IMECS involves on-line computer data collection into a database management system and is capable of producing a variety of user-specified reports. (For more details on the MCS, refer to Standards Laboratory Procedure L-25. The IMECS is documented in Introduction to IMECS and Measurement Control.) Regardless of the method of data collection, the Standards Laboratory prepares control samples for a variety of laboratory analyses, including analyses for accountable materials, nuclear safety measurements, and environmental analyses. The control Revision No. 1 Section C samples are submitted to the appropriate laboratories on a predetermined schedule. The control samples are analyzed in the laboratory at the specified frequency and results are either reported to the Standards Laboratory or are entered directly into the IMECS via a local computer terminal. The Standards Laboratory is responsible for monitoring and enforcing compliance with the measurement-control systems. Measurement-control deviation reports are issued by the Standards Laboratory for all control samples that are past due and for all control results that exceed specified limits. The various Quality Laboratories are required to respond in writing to these noted deviations within one week of receipt of the notice. Deviation reports for accountable materials are further reviewed by the Rocky Flats Plant Safeguards group. All records are maintained by the Standards Laboratory. Formal measurement-control reports are produced monthly by both systems. These reports are distributed to the laboratories involved as well as to the Rocky Flats Safeguards group and to DOE. Additionally, in the case of IMECS, the formal reports include control charts for each individual measurement control program. IMECS also provides a variety of reports, tables, and plots on demand since it is an on-line database management system. Date: December 15, 1987 Revision No. 1 Section C C-7.6.2 Weight Measurement Control Within the Quality Laboratories, balances that are used for critical applications requiring certified accuracy and precision are included in the Weight MEASUREMENT Control Program. The Standards Laboratory supplies balance users with certified check weights. Balance operators must make periodic check weighings on their balances in accordance with the <u>Standards Laboratory Procedure M1307</u>, "Weight Measurement Control Check Weight Procedure." Data is either recorded on specially provided data entry forms or is entered directly into the Weight Measurement Control Program in the IMECS. The Standards Laboratory maintains all records on the check weights and the Weight Measurement Control Program. # C-7.6.3 Performance and System Audits Quality assurance audits will be conducted during the sampling and analysis program as mandated by the QL Quality Assurance Program. The audits are a key mechanism for ensuring the technical and procedural accuracy of hazardous waste and environmental sampling and analysis. A field audit will be performed periodically in accordance with an established schedule. Specific system audits of deliverables, field notebooks, calculations, and data entry will be conducted by the Quality Date: December 15, 1987 Revision No. 1 Section C Assurance Coordinator throughout the year ar random, unscheduled intervals. Specific audits will be planned, organized, and clearly defined before they are initiated. Auditors will identify non-conformances or deficiencies, report and document, initiate corrective action through appropriate channels, and follow up with a compliance review. Annually, or more frequently if appropriate, a quality assurance audit will be performed in accordance with an established schedule by the Quality Assurance Coordinator. A report will be prepared that summarizes any deviations from approved plans or procedures and their impacts on results. ### C-7.6.4 Field Audits For randomly selected sites where samples are collected, an unannounced audit, investigating conformance with QA/QC procedures will be performed during a randomly selected performance period. A written report on the results of this audit, along with a notice of non-conformance (if necessary), will be submitted to management. #### C-7.6.5 Corrective Action After each audit, auditors will identify non-conformances in a written non-conformance notice and initiate corrective action. The non-conformance notice will describe any non-conforming conditions and sets a date for response and corrective action. A Date: December 15, 1987 Revision No. 1 Section C written response outlining the proposed corrective action is required. Follow-up review will be performed as necessary to confirm that the corrective actions have been implemented. # APPENDIX 5 DRILLING AND SOIL SAMPLING PROCEDURES #### APPENDIX A ## 1. DRILLING AND SAMPLING #### 1.1. PURPOSE To provide procedures for borehole drilling and sampling. ### 1.2. DEFINITIONS - Monitor Wells: Two-inch wells designed for monitoring water levels and groundwater quality. - Alluvial Wells: Monitor wells completed in surficial materials (Rocky Flats Alluvium, colluvium, or valley fill alluvium). - Bedrock Wells: Monitor wells completed in saturated sandstone of the Arapahoe or Laramie Formations. -
Piezometers: Two-inch wells completed in claystone of the Arapahoe or Laramie Formations for monitoring water levels. - Surface Casing: Casing set and grouted through surficial materials in bedrock wells to prevent interconnection of shallow and deep flow systems. #### 1.3. RESPONSIBILITY The Rockwell International CEARP Manager is responsible for the drilling and sampling program. The Subcontractor Site Manager is responsible for direct supervision of drilling and sampling. The Subcontractor Site Manager will report daily to the Rockwell International CEARP Manager on drilling and sampling progress including any problems encountered implementing the field program. The Field Team Leader is responsible for supervision of drilling, verification of drilled depths, and approval of the Driller's daily logs. The Field Team Leader is also responsible for sample collection, handling, and field screening. The Driller is responsible for operating and maintaining the rig and auxiliary equipment, for keeping a clean and safe working environment, and for assisting the Field Team Leader with sampling. ## 1.4. EQUIPMENT AND MATERIALS - Drilling rig with auger, rotary tricone, and diamond coring systems - Water truck - Rod trailer - Maintenance and access vehicles - Miscellaneous drilling equipment - Volatile organic-free water - Electric well sounder - Glass jars and lids - Labels - Core boxes - Plastic wrap - Pipe wrenches - Rock hammer - Pocket knife - Hand lens - Tape measure divided in tenths of a foot - Dropper bottle of hydrochloric acid - Protractor - Marking pens and pencils - Field notebook - Log of boring form ### 1.5. PROCEDURES ## 1.5.1. Alluvial Wells - (1) Alluvial wells will be drilled with hollow stem augers where practical. Boulders in the Rocky Flats Alluvium may prohibit the use of hollow stem augers, in which case alternative drilling methods such as tricone rotary will be used. Sampling through surficial materials will be performed by continuous sampling through the hollow stem augers (with split tube inner barrel) or by split spoon, depending on the materials. - (2) Alluvial wells will be drilled approximately one to three feet into bedrock. They will be terminated after confirming the presence and lithology of bedrock. (3) The hole diameter will be a minimum of four inches. The use of hollow stem augers eliminates the need for drilling fluids; however, some volatile organic-free water may be used if hole stability is a problem. In no event will mud or foaming agents be used. ## 1.5.2. Bedrock Wells - (1) Bedrock wells will be augered and rotary drilled through surficial materials and weathered bedrock as described above. - (2) Upon penetration of unweathered bedrock, steel surface casing will be set and neat cement grout will be placed in the annulus through a tremie pipe or by pushing a plug of cement through the surface casing. The surface casing will be approximately 6 in. in diameter. - (3) Grout will be neat Type I or Type II Portland cement, mixed with volatile organic-free water at a mix ratio of 6 to 9 gal. of water per 94-lb bag of cement. Grout will be allowed to set at least twenty-four hours before drilling resumes. - (4) The hole will proceed through bedrock by rotary coring (size NX or larger), using bentonite mud, volatile organic-free water, air mist (air and volatile organic-free water), or filtered air. - (5) Drilling will progress into bedrock until at least 3 ft of saturated sandstone within a 10-ft interval of bedrock is encountered, or until the well is approximately 100 ft deep. Wells may be drilled deeper than 100 ft to fully penetrate a sandstone. - (6) After drilling through sufficient sandstone thickness (as defined above), the hole will be cleaned and stabilized for packer testing. - (7) Geophysical logging may be performed in some holes after packer testing. - (8) After packer testing and geophysical logging are completed, the hole will be reamed, if necessary, to a minimum of 4 in. for well installation. ## 1.5.3. Sampling and Logging - (1) The Driller will provide either continuous samples from a split tube sampler, split-spoon samples, rotary cuttings, or NX core, depending on the drilling method. - (2) As drilling progresses, the Field Team Leader will confirm sample depths with the Driller, describe the samples, and field screen the sample for organic or radioactive contamination. Descriptions and screening results will be recorded in the field notebook and on a log of boring form. The Field Team Leader will also note the depth at which groundwater is encountered. - (3) Sample descriptions will include the following items as appropriate: - Borehole designation - Time and date - Interval footage and recovered footage - Name of unit and/or brief rock name - Characteristic structures of the unit - Fossils - Lithologic description - Nature of contacts - Water content - Organic and radioactive field screening results. - (4) Auger and rotary cuttings will be bottled in glass jars and labeled. Intervals designated for chemical analyses will be placed in jars and stored on ice in coolers. These samples will be delivered to the onsite laboratory, if an onsite laboratory is used, within 3 hours of collection. - (5) Core continuous split tube samples, and split-spoon samples will be wrapped with clear plastic to prevent rapid drying and cracking and placed in NX or NC size core boxes as appropriate. Wooden blocks will be inserted in the boxes at the beginning and end of runs to mark footages and will indicate lost core zones. Core boxes will be labeled and stored. - (6) The Driller will keep a daily log detailing footage drilled, material used, and stand-by time. The Field Team Leader will keep an independent record of drilling activities in the field notebook to verify the daily logs. One copy of the daily logs will be submitted to the Subcontractor Site Manager and Rockwell International CEARP Manager by the Field Team Leader on a weekly basis. # 1.6. RECORDS - Log of boring - Driller's daily logs - Field notebook #### 2. MATERIALS DESCRIPTION ### 2.1. PURPOSE To provide procedures for field descriptions of surficial and bedrock materials. ### 2.2. RESPONSIBILITY The Field Team Leader is responsible for describing core and samples following this work procedure. # 2.3. EQUIPMENT AND MATERIALS - Log of boring - Field notebooks - Clipboard - Rulers - Rock-color chart, Geological Society of America - Waterproof pens - Colored pencils - Protractor - Hand lens - Dropper bottle of hydrochloric acid - Rock hammer - Grain-size chart/scale ## 2.4. PROCEDURES - (1) All surficial materials and bedrock samples will be described using the following sequence of parameters: - Footage - Sample type - Percent recovery - General material type - Color - Structural characteristics - Grain sizes - Composition of grains - Degree of sorting - Grain shapes - Minor characteristics - Degree and nature of cementation - Moisture content Procedures for describing each of these parameters are presented below. - (a) Footage: Depth of sample interval. - (b) Sample Type: Continuous drive, cuttings, core, or split spoon. - (c) Percent Recovery: Percent of sample recovered from borehole. - (d) General Material Type: Clay, clayey sand, sandy clay, Silt, sand, gravel, sand and gravel, shale, sandstone, or siltstone. - (e) Color: Color of samples will be described by comparing samples with a standard color chart. Either a Munsel soil color chart or USGS standard color chart will be used. Colors will be described from moistened samples. Any color abbreviations shall follow those set by the standard color chart used. - (f) Structural Characteristics: This parameter describes bedding and other primary features of the sample, including: nature of bedding (e.g., massive, tabular, lenticular, laminated, graded, or even); primary features within beds or other structures (e.g., grading, laminations, cross bedding, channeling, distorted flow banding, and inclusions); and characteristic secondary features (e.g., cleavage, prominent weathering effects, and fracturing) (Compton 1962). - (g) Grain Size: Grain sizes will be classified according to the Wentworth scale (Dresser Atlas 1982). The percentage of each grain size will be denoted by the following descriptive terms. | Descriptive Term | Percentage | |--------------------------------|------------| | Trace | 1-10% | | Some | 10-20% | | Adjective (sandy, silty, etc.) | 20-35% | | "And" | 35-50% | (h) Composition of Grains: Composition of grains will be described by using the major or dominant grain component first, followed by minor component percentages or the appropriate descriptive term (Compton 1962). - (i) Degree of Sorting: The degree of sorting is a measure of particle size uniformity. It will be visually estimated in the field using sorting charts (Dresser Atlas 1982). - (j) Grain Shapes (Roundness): Roundness is the degree of a clastic particle abrasion and is reflected in the sharpness of its edges and corners. Grain shapes will be determined visually in the field using grain shape charts (Dresser Atlas 1982). - (k) Minor Characteristics: Minor and/or unusual characteristics of a sample will be noted in the description including weathering. - (1) Degree and Nature of Cementation: The degree of cementation will be recorded as uncemented or unconsolidated, poorly cemented or consolidated, or well cemented, based on visual inspection. The nature of calcium carbonate will be determined based on the reaction of samples to dilute hydrochloric acid. The intensity of the hydrochloric acid reaction will be described as no reaction, weak reaction, or strong reaction. - (m) Moisture Content: A general qualitative description will be used to describe moisture content. Dry: No discernible moisture present. Damp: Enough moisture present to darken the color of the sample, but does not feel moist to the touch. Moist: Sample feels moist to the touch. Wet: Visible water is present.
(2) Geologic descriptions of core will follow the same procedures as outlined above. Additional records required for core are: the cored (run) interval, the footage of recovered core and percent recovery, and the Rock Quality Designation (RQD) of the cored interval. RQD is the percent of sound core recovered in pieces greater than four inches in length (Deere 1964). ## 2.5 RECORDS - Field Notebooks - Log of Boring ## 2.6. REFERENCES - Compton, R. R., 1962, Manual of Field Geology: John Wiley and Sons, Inc., New York, 378 pp. - Deere, D. U., 1964, Technical Description of Rock Cores for Engineering Purposes: Rock Mechanics and Engineering Geology, Vol. 1, pp. 16-22. - Dresser Atlas, 1982, Well Logging and Interpretation Techniques: Dresser Atlas, Inc., 228 pp. # 3. FIELD SCREENING FOR TOTAL ORGANIC COMPOUNDS IN SOIL SAMPLES #### 3.1. PURPOSE To field screen soil samples for volatile organic compounds. ## 3.2. RESPONSIBILITY The Field Team Leader is responsible for field screening of samples following this work procedure. ## 3.3. EQUIPMENT AND MATERIALS - Field notebooks - Log of boring - Adhesive labels - Waterproof pen - Sample bottles (500-ml amber glass) with lids - Photoionization detector (PID) - Organic vapor analyzer (OVA) ## 3.4. PROCEDURES - (1) Approximately 50 to 100 ml of soil will be placed in 500-ml amber glass jars, and an equal amount of deionized water will be added to the jar. The jar will then be shaken and allowed to stand for 30 minutes allowing organic compounds to volatilize. - (2) The sample jars will be labeled with the date, time, borehole number, sample depth, and Field Team Leader's. - (3) Field screening of the samples for total organic vapor concentrations will be conducted using an OVA and a PID. The instruments will be calibrated to the volatile organic compounds of concern at each site (Roffman et al. 1986). - (4) The lid of the sample jar will be opened slightly and the probes of the instruments will be placed inside the jar. Values registered on each instrument will then be recorded in the field notebook. The date and time of the reading, the borehole number, and the sample depth will also be recorded in the field notebook and log of boring. ## 3.5. RECORDS Field notebooks Logs of borings #### 3.6. REFERENCES Roffman, H. K., M. D. Neptune, J. W. Harris, A. Carter, and T. Thomas, Field Screening for Organic Contaminants in Samples from Hazardous Waste Sites, 1986, Abstract from: Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater-Prevention, Detection, and Restoration, Houston, Texas, 8 p. #### 4. LABELING AND STORAGE OF SAMPLES # 4.1. PURPOSE To provide procedures for labeling and storage of boxed cores and jarred samples. ## 4.2. **DEFINITIONS** - Storage Facility: The location where boxed cores and/or jarred samples will be stored without freezing. ## 4.3. RESPONSIBILITY The Field Team Leader is responsible for labeling and storage of all samples. # 4.4. EQUIPMENT AND MATERIALS - Labeling Pens - Adhesive Labels - Inventory Sheets - Field Notebook ## 4.5. PROCEDURES - (1) Label core boxes and sample jars in the field as samples are collected. All samples will be labeled with - (a) location - (b) borehole designation - (c) date - (d) depth - (e) box or jar number - (f) total number of boxes or jars for the borehole - (g) Field Team Leader initials Check that all information is correct before leaving the field with samples. (2) Transport samples to storage facility. (3) Place samples in storage facility. Samples should be stacked in order by hole number and in neat and orderly arrangement for accessibility. All samples from each well should be placed in one location, and the labels should be visible. ## 4.6. RECORDS - Field Notebook # 5. DECONTAMINATION OF DRILLING, TESTING, AND SAMPLING EQUIPMENT #### 5.1. PURPOSE To provide procedures for equipment decontamination. ## 5.2. DEFINITIONS Equipment: Augers, drill pipe, bits, sampling devices, tools, tremie pipe, packers, water pipe, geophysical logging equipment, casing, electric well sounders, pumps, and all other miscellaneous equipment used in drilling, sampling, testing, logging, installing, and developing monitor wells. Decontamination: Decontamination is the process of cleaning equipment to avoid transport of contamination. ### 5.3. RESPONSIBILITY The Field Team Leader is responsible for supervising and approving the decontamination cleaning of equipment. The Driller is responsible for cleaning all drilling, sampling and well construction equipment and assisting the geophysicist in cleaning geophysical probes and cables. ## 5.4. EQUIPMENT AND MATERIALS - Portable Steam Cleaner - Brushes and Buckets - Organic-free Water - Alkaline Detergent ## 5.5. PROCEDURES ## 5.5.1. Drilling and Well Installation Equipment (1) Decontaminate all drilling equipment before starting the first borehole. - (2) Upon termination of a borehole, decontaminate all drilling, packer testing, and geophysical logging equipment as well as stainless steel well casing and screen. - (3) Decontamination will include: - (a) a rinse with the steam cleaner using organic-free water; - (b) scrubbing with brushes using a solution of organic-free water and an alkaline detergent; and - (c) a final rinse with the steam cleaner using organic-free water. - (4) Cover drilling equipment with a clean sheet of plastic after it is decontaminated. Install wet casing and screen in the borehole. - (5) Decontaminate all equipment and tools used in well installation. - (6) Before moving to the next drill site, decontaminate the wireline cable by pulling it off the drum to the appropriate length. Also decontaminate the rig table and mast. ## 5.5.2. Sampling Equipment - (1) Decontaminate all sampling equipment before collecting the first sample and after each sample collected. - (2) Decontamination will include: - (a) scrubbing with brushes using a solution of organic-free water and an alkaline detergent; and - (b) a rinse with organic-free water (a steam cleaner may be used). - (3) Decontaminate the electric well sounder probe and cable before and after measuring water levels. - (4) Decontaminate pumps and pump line exteriors before and after pumping a monitor well. Decontaminate the internal system of pumps and tubing by pumping at least 1 tubing volume of organic free water through the pump. (5) Discard bailer rope after each use. Attach new polypropylene rope to the bailer at each well. # 5.6. RECORDS - Field Notebook ## 2. WELL INSTALLATION ## 8.1. PURPOSE To provide procedures for monitor well construction and installation. ### 8.2. DEFINITIONS Monitor Well: Two-inch well designed for monitoring water levels and groundwater quality. Alluvial Well: Monitor well completed in surficial materials (Rocky Flats Alluvium, colluvium, or valley fill alluvium). Bedrock Well: Monitor well completed in saturated sandstone of the Arapahoe or Laramie Formations. Piezometers: Two-inch well completed in claystone of the Arapahoe or Laramie Formations for monitoring water levels. ### 8.3. RESPONSIBILITIES The Subcontractor Site Manager is responsible for selecting completion intervals and well designs. Completion intervals and well designs will be approved by the Rockwell International CEARP Manager prior to well construction. The Field Team Leader is responsible for supervision and documentation of well completions. The Driller will assemble and install all materials. # 8.4. EQUIPMENT AND MATERIALS - Schedule 5 Type 316 stainless steel casing - Schedule 5 Type 316 stainless steel wire wrap screen - Type 316 stainless steel centralizers - Bentonite pellets - Appropriate filter pack - Neat Type I or II Portland cement - Concrete mix - Organic-free water - Five-gallon buckets - Tremie pipe - Hoses and pump - Shovel - Trowel - Protective surface casing - Padlock - 100-ft tape measure divided in tenths of a foot with a weight on the - Electric well sounder - Well construction summary data sheets - Field notebook #### 8.5. PROCEDURES - (1) Pull all augers and drill pipe from borehole. If borehole stability is a problem, the wells may be completed inside the hollow stem augers. - (2) Decontaminate drilling equipment and casing. - (3) Measure depth to water and design well construction. Alluvial Wells. The screened interval in alluvial wells will extend from approximately 1 ft below the top of bedrock to 2 to 5 ft above the water table. A filter pack designed for the grain size of the formation will be placed around the screened interval and will not extend more than 2 ft above the top of the screened interval. A 1-ft-thick bentonite seal will be placed above the filter pack, and the annulus will be tremie grouted with neat Portland Type 1 or 11 cement to the surface. Cement may be poured from the surface if the cemented interval is within 5 ft of the surface. A locking steel protective casing will be placed over the well, and a concrete surface pad, approximately 3 ft in diameter, will be poured around the surface casing. The pad will be sloped so as to drain away from the well. Bedrock Wells. Bedrock monitor wells will be screened across the entire interval of saturated sandstone with a minimum screened interval of 5 ft. Filter pack, bentonite, cement grout, protective casing, and a concrete pad will be placed as described above. <u>Piezometers</u>. Deep boreholes which do not encounter sufficient sandstone thickness after drilling through 70 ft of claystone with an average hydraulic conductivity of 5 x 10⁻⁷ centimeters per second will be completed as piezometers with two-inch, Schedule 80, threaded and flush jointed, polyvinylchloride (PVC) casing. Ten ft of machine slotted casing will be placed at the base of the casing string. The remainder of the well completion will be as discussed above for alluvial monitor wells. - (4) Calculate the amount of filter pack, bentonite, and cement that will be required for well construction. - (5) Weld end cap on the bottom of the well
screen with a stainless steel welding rod, and thread the casing string together. - (6) Place centralizer in the center of the screened interval, and determine its location on the casing string to the nearest 1/100th foot. - (7) Measure the length of the screened interval and the blank casing to the nearest 1/100th ft. - (8) Measure total depth of the open borehole. If the bottom of the borehole is below the base of the screen, backfill it with bentonite pellets or tremie cement grout to the base of the screen. If the open borehole is backfilled with grout, allow it to set for 24 hours before well completion. Measure total depth of the open borehole again. - (9) Place casing string in open borehole. Place slip-on cap on top of the casing string. Measure stick up to determine total well depth. Check well design for correct total depth. - (10) Slowly pour filter pack into borehole annulus, making sure it is evenly distributed around the well casing. Gently shake the casing as filter pack is added to avoid bridging of the filter pack. Measure depth to the top of the filter pack after each bag is added. Make more frequent measurements as filter pack approaches the top of the screened interval. - (11) Record the final depth to the top of the filter pack on well construction summary sheet. Record amount of filter pack used in the field notebook. - (12) Pour bentonite pellets into borehole annulus, making sure they are evenly distributed around the well casing. - (13) Measure depth to the top of the bentonite seal and record on well construction summary sheet. Record amount of bentonite used in the field notebook. - (14) If the bentonite pellets are above the water table, add 1 to 2 gal. of organic-free water to the hole. Allow the bentonite to swell for approximately 15 minutes before grouting to the surface. - (15) Mix neat Type I or II Portland cement (as directed by the Subcontractor Site Manager) at a mix ratio of 6 to 9 gal. of water per 94-lb bag of cement. - (16) Place tremie pipe in borehole annulus and attach appropriate hoses and pump. - (17) Pump grout down borehole annulus. Pour grout from the surface if the cemented interval is within 5 ft of the surface. Record amount of cement used in field notebook. - (18) Measure final stick-up of well casing and record on well construction summary sheet. - (19) Set protective surface casing over stainless steel well casing. - (20) Allow grout to set for 24 hr. - (21) Place form for concrete surface pad around well casing. - (22) Mix concrete and pour surface pad around well casing. Slope pad away from the well with a trowel. - (23) Weld well number on protective surface casing. # 8.6. RECORDS - Well Construction Summary - Field notebook ### 9. WELL DEVELOPMENT ### 9.1. PURPOSE To provide procedures for well development. ### 9.2. DEFINITIONS Well Development: Well development is the process by which fines from the formation and/or filter pack are removed from the vicinity of the well bore in order to increase the efficiency of the well (UOP Johnson Division 1975). ## 9.3. RESPONSIBILITY The Subcontractor Site Manager is responsible for determining which method of development will be used. Well development methods will be approved by the Rockwell International CEARP Manager prior to well development. The Field Team Leader is responsible for well development. The Driller will be responsible for supplying an air compressor with an air filter if the well is developed by the air lift method. ## 9.4. EQUIPMENT AND MATERIALS - Electric well sounder - Tape measure calibrated in tenths of feet - Stainless steel pump* - Air compressor* - Teflon bailer* - Bailer rope* - PVC drop pipe* - Gasoline powered generator* - One liter beaker - Watch - Calculator - Well development summary sheets - Field notebook *NOTE: The use of these materials will depend on the method of well development selected. ### 9.5. PROCEDURES The well will be developed by pumping, bailing, or air-lifting. Pumping is the preferred method of well development and will be used wherever possible. Air-lifting is less desirable because the potential exists for oils from the air compressor to enter the wells, but may be necessary to adequately stress the wells. An air filter will be used if air-lifting is necessary. Bailing is not an efficient method of well development because of the low flow rates induced by bailing. Bailing will only be done in the event of pump failure and to remove sediments in the bottom of the casing. - (1) Decontaminate all equipment prior to well development. - (2) Measure the water level in the well. - (3) Record the water level on the water level data sheet. Record the date, time, well, and development methods on the well development summary sheet. ## 9.5.1. Pumping Well development by pumping will be accomplished by means of a two-inch stainless steel piston pump. The pump will be lowered to approximately 1 ft above the bottom of the well. The well will then be pumped until ten casing volumes of water have been removed from the well, until the well water is clear, or until 4 h have clapsed. The pump will be raised 2 ft at periodic intervals until the entire screened interval is developed. ## 9.5.2. Air Lifting Well development by air lifting will be accomplished by using an air compressor and 1-in. PVC air line. An air filter will be attached to the air line from the air compressor to prevent the introduction of compressor oils or other foreign materials into the well. The 1-in. PVC air line will be lowered until within approximately 2 ft of the bottom of the well. The air line from the air compressor will then be attached to the top section of PVC pipe. The well will then be developed by the introduction of compressed air into the well for approximately fifteen minutes, or until a column of water is removed from the well. The well will then be allowed to recover and another column of water discharged to the surface. This process will be repeated until 10 casing volumes of water have been removed from the well, until the produced water is clear, or until 4 h have elapsed. At periodic intervals, the air line will be raised 2 ft until the entire screened interval is developed. ## 9.5.3. Bailing Well development by bailing will be accomplished using a Teflon bailer and small diameter polypropylene bailing rope. Water, formation and/or filter pack materials will be removed from the well by bailing until 10 casing volumes of water have been removed from the well, until the well water is clear, or until 4 h have elapsed. The bailing rope will be discarded following well development. #### 9.6. RECORDS - Well development summary sheets - Field notebook ### 9.7. REFERENCES Johnson, E. E., Inc., Groundwater and Wells - A Reference Book for the Water-Well Industry, 1980, Johnson Division, UOP, Inc., Saint Paul, Minnesota, 440 p. #### 11. WELL PURGING # 11.1. PURPOSE To provide procedures for well purging. ## 11.2. DEFINITIONS Casing Volume: The casing volume is the volume of water standing inside the casing, i.e., the distance between the water level and the bottom of the casing (length of the water column in the well) multiplied by the inner cross-sectional area of the casing. Well Purging: Purging is the removal of sufficient water from the well so that representative formation waters enter the well and can be sampled. Purging will consist of removing three casing volumes. ### 11.3. RESPONSIBILITY The Subcontractor Site Manager is responsible for selecting well purging methods. Well purging methods will be approved by the Rockwell International CEARP Manager prior to purging. The Field Team Leader is responsible for purging wells prior to sampling. ## 11.4. EQUIPMENT AND MATERIALS Wells will be purged using dedicated bladder pumps, dedicated Teflon bailers. or portable sampling pumps. Because of the various purging methods, some or all of the following equipment will be needed. - Bladder pump - Oil-less air compressor - Stainless steel piston pump - Polypropylene rope - Large container of known volume - Deionized water - Watch - Calculator - Pencil - Field Water Quality Data Sheet - Field notebook ## 11.5. PROCEDURES ## 11.5.1. Calculations (1) Calculate the casing volume using the formula Casing volume (gallons) = (TD - WL) • (A), where TD = total depth of the well from ground surface (ft), WL = depth to water from ground surface (ft), A = cross sectional area of the well (gallons/ft), = 0.163 for a 2-in. well, = 0.367 for a 3-in. well, = 0.652 for a 4-in. well, and 1.468 for a 6-in. well. Note that total depth and depth to water must be measured from the same datum. The total depth of the casing is usually reported as depth below ground surface and the depth to water is measured from the top of the inner casing. In order to correct the depth to water measurement, subtract the height of casing above ground from the depth to water measured from the top of casing. - (2) Multiply the casing volume by three. This is the volume of water to be purged. - (3) Record calculations in the field notebook and on Field Water Quality Data Sheet. # 11.5.2. Purging Remove three casing volumes of water from the well using the pump, the dedicated Teflon bailer, or the portable sampling pump. Regardless of the methods used to purge the well, record the total volume purged and the time when purging begins and ends. Dedicated Pump System. The dedicated pump system will consist of an air-actuated bladder pump with downward flow checking valves on the inlet to the inside of the bladder and on the tubing above the outlet from the inside of the bladder. Air is delivered to the outside of the bladder and pressure is maintained long enough that the bladder is compressed and water inside it is forced into the discharge tubing. Water is kept from exiting the bottom of the pump by the lower check valve. The air pressure is vented to surface through the same pressurizing tube (requiring a time dependent on length of tubing,
required air pressure, and depth of submergence of the pump). Water forced into the discharge tubing is held by the upper check valve. The cycle is repeated until discharge reaches the surface and purging begins. Because of this pumping mechanism, the discharge is delivered to the surface in cyclic slugs, but the pressurizing air is never in contact with the water. The upper check valve has a small-diameter bypass so that water in the discharge tubing will drain back into well and not freeze. - (1) Attach compressor to Pump Pressure Inlet on controller (use oil-less compressor to protect pneumatic logic components inside controller). - (2) Connect red air hose between well cap and Pump Supply on controller. - (3) Position Refill and Discharge knobs to center position (12 o'clock) and start compressor. Record the time at the start of pumping in the field notebook. - (4) Set gas pressure level to a pressure sufficient to lift the column of water in the discharge tubing plus 30 psi, but do not exceed 125 psi total. - (5) Adjust Discharge knob so that venting occurs at the end of the slug discharge. - (6) Decrease Refill cycle time until volume discharged in each cycle begins to decrease. If decrease is immediate, lengthen both Refill and Discharge cycle times and repeat steps 5 and 6. - (7) Measure volume produced in a container of known volume (e.g., plastic trash can or plastic bucket). - (8) Continue pumping until the appropriate volume has been purged. Record time at end of pumping as well as the total volume pumped in the field notebook and on the Field Water Quality Data Sheet. - (9) Measure and record water level at the end of pumping. # Bailing - (1) Put on surgical gloves. New cotton gloves may be worn over the surgical gloves if desired. - (2) Place a sheet of plastic over the casing. Cut a hole in the plastic for the casing and spread sheet on ground around the well. The plastic and equipment should be arranged in such a manner to enable the samplers to do all work while standing on the plastic. - (3) Attach new polypropylene rope to bailer inspect the check valve, top bail, knot, and rope. Do not allow bailer or rope to contact anything but clean plastic. If any components are loose or damaged, replace them. Decontaminate equipment if any new parts are used. - (4) Lower bailer into well, fill with water, and hoist to surface, coiling the rope into the hands. - (5) Empty bailer into a container of known volume (e.g., 5-gal. bucket). - (6) Continue bailing until appropriate volume has been purged, as determined by volume in container. - (7) Record volume purged in the field notebook and on Field Water Quality Data Sheet. ### Portable Pump (1) Decontaminate the pump and sufficient tubing by scrubbing with an alalkaline detergent solution followed by a deionized water rinse. Pump at least one tubing volume of deionized water through the pump. - (2) Place decontaminated pump approximately 1 ft above the bottom of the well. - (3) Place up-hole end of the discharge line in container of known volume (e.g., plastic trash can or 5-gal. bucket). - (4) Connect compressor to pump controller. - (5) Turn on compressor and pump appropriate volume as measured in container. - (6) Record purged volume on the Field Water Quality Sheet. - (7) After collecting the sample, decontaminate pump by scrubbing all tubing that has been pulled off the reel and the pump itself with an alkaline detergent solution and rinsing with deionized water. Pump at least one tubing volume of deionized water through the pump. #### 11.6. RECORDS - Field water quality sampling and analysis form - Field notebook ### 11.7. REFERENCES U.S. Environmental Protection Agency, 1986, Hazardous Waste Groundwater Task Force Protocol for Groundwater Evaluation, Office of Solid Waste and Emergency Response, Washington, D.C., DIR 9080.0-1. #### 12. GROUNDWATER SAMPLING #### 12.1. PURPOSE To provide procedures for groundwater sample collection. ### 12.2. RESPONSIBILITIES The Subcontractor Site Manager is responsible for assigning specific wells to be sampled. The sampling schedule will be approved by the Rockwell International CEARP Manager prior to implementation. The Field Team Leader is responsible for sampling monitor wells, field water quality measurements, and transportation of samples to the onsite laboratory. # 12.3. EQUIPMENT AND MATERIALS - Sample bottles provided by on-site laboratory - Thermometer inscribed in degrees Centigrade - pH meter - Portable electrical conductivity meter - Field notebook #### 12.4. PROCEDURE - (1) Pick up sample bottles, cooler, blue ice packs, sample labels, and chain-ofcustody form at the laboratory. - (2) Pre-label bottles before leaving the laboratory. Place sample bottles on ice. - (3) Produce the sample with the same device used to purge the well. - (4) Collect the sample immediately after purging if possible. If the well is essentially dry after pumping, measure the water level in the well on a periodic basis (approximately every three hours). Collect the volatile organic samples within three hours of purging. Collect the rest of the samples as soon as there is sufficient volume in the well to sample as soon as there is sufficient volume in the well to fill the sample bottles (approximately 4 - gallons). Attempt to collect an aliquot for field tests and laboratory analysis (in that order) 24 hours after purging even if there is insufficient water in the well to fill all sample bottles. - (5) Produce sufficient sample for performance of four field water quality tests (two 500 milliliter beakers one for temperature and conductivity and one for pH). Perform one field water quality test before sampling, two during sampling, and one after sampling following procedures in this document. - (6) Rinse each bottle with formation water directly from the pump discharge or bailer. Fill the bottle about one-quarter full, cap the bottles, and rinse both bottle and cap with a swirling motion. Discard rinse water. Immediately fill bottle with sample, cap, complete label, rinse bottle exterior with deionized water, place in plastic bag, and return bottle to cooler. Remove only one bottle from the cooler at a time for filling. - (7) After rinsing the volatile organics vials and caps with sample, fill each vial to overflowing with sample. Carefully place the cap on the vial so that air is not captured, and tighten. Invert the vial and tap lightly. If bubbles are observed, repeat the process. - (8) Record time of sampling on Field Water Quality Sheet and in field notebook. Also note weather conditions and any other observations (e.g., insufficient sample to fill all bottles, bottles broken, etc.). - (9) Complete chain-of-custody form and indicate analyses to be performed in the laboratory. - (10) Deliver samples to the on-site laboratory within 3 hours of collection for filtration and/or preservation of appropriate bottles. #### 12.5. RECORDS - Field water quality and analysis sampling form - Field notebook # 12.6. REFERENCES U.S. Environmental Protection Agency, 1986, RCRA Ground-Water Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response, Washington, D.C. #### 13. FIELD MEASUREMENTS #### 13.1. PURPOSE To provide procedures for field measurements made at the site of monitor wells and surface water stations. #### 13.2. DEFINITIONS Field Measurements: These measurements consist of temperature, pH, conductivity, dissolved oxygen, organic vapors, and qualitative observations of color and odor. #### 13.3. RESPONSIBILITY The Field Team Leader is responsible for measurement of field parameters. #### 13.4. EQUIPMENT AND MATERIALS The equipment used for field measurements has been selected based on proven durability in field applications; however, field equipment is still rather fragile. Equipment should be kept spotlessly clean at all times and protected from temperature extremes. Conductivity meters and pH meters will be calibrated daily following the manufacturers' instructions. All other instruments will be calibrated weekly. Each instrument will have its own calibration log book, and all calibrations will be documented. The following equipment is normally used: - Thermometer inscribed in degrees Centigrade - pH Meter with calibration buffer solutions - Portable electrical conductivity meter with calibration - Standard solutions - Photoionization Detector (PID) - Organic Vapor Analyzer (OVA) - Deionized water - Pencil - Field Water Quality Sheets - Field notebook - Calibration notebooks #### 13.5. PROCEDURE #### 13.5.1. Temperature Measurement Immerse the thermometer bulb in a beaker filled with sample. Make the measurement immediately after sampling so that the temperature will not have time to change. Read the thermometer while it is still immersed, to the nearest degree Centigrade, and record the reading in the field notebook and on the Field Water Quality Data Sheet. Rinse the thermometer with deionized water and put it away. Calibrate the thermometer on a weekly basis against a National Bureau of Standards certified thermometer. Document calibrations in the calibration log book. ## 13.5.2 pH Measurement (VWR Scientific 1976) - (1) Turn on meter. - (2) Check battery. - (3) Place partially filled 50-milliliter beakers containing pH 4 and pH 7 buffer solutions into a water bath (well water) to maintain the temperature of the buffers as close as possible to the temperature of the well water. The water bath will need to be refilled periodically with water removed from the well. - (4) Remove boot from electrode. - (5) Rinse electrode with deionized water. Be sure any salts are removed. - (6) Immerse bulb in pH 7 buffer. - (7) Adjust using calibration knob to read 7. - (8) Rinse electrode with deionized water. - (9) Immerse bulb in pH 4 buffer. - (10) Adjust using temperature knob to read 4 (this is a span adjustment and not a true temperature correction). - (11) Measure the temperature of the
buffers using a thermometer, following the procedures described previously. Be sure to rinse the thermometer with deionized water between solutions. - (12) Collect some sample in a beaker (rinse the beaker with sample). - (13) Rinse the thermometer with deionized water, and measure the temperature of the sample. If the buffer solutions are not at the same temperature as the samples, put fresh formation water in the water bath, allow time for temperature equalization, and repeat the calibration procedure. - (14) Rinse the electrode in deionized water. - (15) Immerse the bulb in the sample. - (16) Read the pH to the nearest tenth of a pH unit. Stir the sample with the electrode to hasten reading stability. - (17) If the pH is greater than 7, re-calibrate using the pH 10 buffer instead of the pH 4. Perform steps 5 through 16 above. If most samples have pH values greater than 7, pH 10 buffer should be routinely substituted for pH 4. - (18) Record the pH reading on the data sheet and in the field notebook. Document calibrations in the calibration log book. - (19) Rinse the electrode with deionized water and replace plastic boot. - (20) Turn off meter. #### 13.5.3 Conductivity Measurement (YSI 1976b) - (1) With conductivity meter off, check zero position. Adjust if necessary. - (2) Switch to red line and adjust. - (3) Calibrate meter against standard solutions and record calibrations in the calibration log book. - (4) Collect a sample in a beaker (rinse beaker with sample before collecting). - (5) Rinse probe with deionized water. - (6) Immerse probe in the sample. - (7) Switch to temperature. Record the temperature on Field Water Quality Sheet and in field notebook (may be different from earlier temperature measurement). - (8) Switch to conductivity and record both the needle reading and scale knob setting. Do not perform any calculations. Record the two values on the Field Water Quality Sheet and in field notebook. - (9) Turn meter off. - (10) Remove probe from sample and rinse with deionized water. - (11) Rinse beaker with deionized water. #### 13.5.4. Dissolved Oxygen Measurement (YSI 1976a) - (1) Place meter in intended operating position. Do not move without calibrating. - (2) With meter off, adjust meter to zero using center screw. - (3) Switch meter to zero and adjust to zero with zero knob. - (4) Switch meter to full scale and adjust to "15" on ppm scale using full scale knob. - (5) Attach probe to the meter and wait 15 min to polarize probe. - (6) Perform air calibration: - Switch to calib O2 position; - Place the probe in moist air (small calibration bottle with a few drops of water) and allow 10 min for temperature stabilization (can be same as polarization wait); and - Set meter to local altitude (6,000 ft amsl) using calib knob -- be sure reading is steady; Calibrate meter against standard solutions (on a weekly basis). Document calibrations in calibration log book. - (7) Place probe in sample and stir by raising and lowering the probe about 1 ft per s. Allow probe to equilibrate to sample temperature and dissolved oxygen. - (8) Turn switch to temp and read temperature from lower scale. - (9) Set O2 solubility factor dial to observed temperature, using the salinity index scale on the dial (salinity determined using SCT meter each bar on index represents 5,000 ppm chloride concentration). - (10) Turn switch to read O2 and read dissolved oxygen value in ppm directly from the meter. - (11) Turn off meter, rinse probe with deionized water, add a few drops of deionized water to the sponge in the probe holder, and return probe to holder. #### 13.5.5. Photoionization Detector Measurements (HNU Systems 1975) - (1) Remove plate on the top half of the case by pulling up on the two fasteners. The extension tube and battery charger are located under this plate. - (2) Attach extension tube to the end of the probe. - (3) Check to see if the instrument's function switch is in the "OFF" position. - (4) Install the 12 pin interface connector for the probe into the connector on the instrument box by carefully matching the alignment key of the probe connector to the slots in the box connector. Twist the connector in a clockwise manner until a distinct snap and lock is felt. - (5) Check the battery supply by turning the function switch to the "BATT" position. The meter needle should deflect to the far right or well within the green zone (NOTE: The battery check indicator will not function unless the probe is attached). If the needle is below or just in the green zone or the red LED light is on, the battery should be recharged. - (6) To zero the instrument, turn the function switch to the "STANDBY" position and rotate the "ZERO" potentiometer until the meter reads zero. This is an electronic zero adjustment. Calibration gases are not needed. - (7) Turn the function switch to the selected scale. There should be a humming sound emanating from the probe. This is the fan which pulls air into the probe. A blue glow should be seen through the end of the probe. Do not stare at this glow, as it is an ultraviolet light source which can damage the eyes. An overall check can also be done by passing a magic marker past the tip of the probe. This should generate a reading or jump of the needle. - (8) Place the function switch in the 0 20-ppm range for the most sensitive monitoring. - (9) Before entering a work area, determine the background concentration. This concentration should be used as a reference to readings made in the work area. Under no circumstances should one attempt to adjust the "ZERO" or "SPAN" adjustments while the instrument is being used in the work area (NOTE: When using the 0 20 ppm range, background concentrations up to 1.0 ppm are common in clean environments. This reading is generated internally by the instrument and should be referred to as zero ppm). - (10) Take PID readings in the headspace of a well before making water level measurements. Condensation and dust on the lamp can interfere with proper readings. PIDs do not function well during precipitation events or sudden temperature changes which can fog up the lamp. - (11) Record all readings in the field notebook. #### 13.5.6. Organic Vapor Analyzer Measurements (Foxboro Analytical) - (1) Remove top cover of the instrument. - (2) Move the INSTR switch to ON and allow five minutes for warm up. - (3) Set the audible alarm to a predetermined level by turning the PUMP switch to ON. Adjust the meter pointer to the desired alarm level using the CALIBRATE ALARM (zero) knob. Turn the ALARM LEVEL ADJUST knob on the back of the readout assembly until the audible alarm comes on. Adjust speaker volume with VOLUME knob. The instrument is then preset to activate the alarm when the organic vapor level exceeds that of the setting. - (4) Move the CALIBRATE switch to 10X and adjust the meter reading to zero with the CALIBRATE ADJUST (zero) knob. - (5) Ensure the PUMP switch is ON and observe the SAMPLE FLOW RATE indicator. The flow rate should be approximately 2 units. - (6) Open H2 TANK VALVE one turn and observe the reading on the H2 TANK PRESSURE indicator (approximately 150 psi of pressure is needed for each hour of operation). - (7) Open H2 SUPPLY VALVE one-half to one turn and observe the reading on the H2 SUPPLY PRESSURE indicator. - Caution: Do not leave H2 SUPPLY VALVE open when the pump is not running, as this will allow hydrogen to accumulate in the detector chamber. - (8) Confirm that meter is still reading zero (readjust if required). - (9) Depress the igniter button. There will be a slight "pop" as the hydrogen ignites, and the meter pointer will move upscale of zero. Do not depress igniter button for more than 6 seconds. If burner does not ignite, let instrument run for several minutes and try again. - (10) Move instrument to an area representative of the "lowest ambient background concentration" to be surveyed. Move the CALIBRATE switch to 1X and adjust the meter to read 1 ppm with the CALIBRATE ADJUST (zero) knob. - (11) If the alarm level is to be set above background levels, turn the ALARM LEVEL ADJUST knob on the back of the readout assembly until it activities slightly above background. - (12) Set the CALIBRATE switch to the desired range. - (13) Using one hand operation, survey the areas of interest while observing the meter and/or listening for the audible alarm indication. - (14) Record readings in the field notebook. #### 13.5.7. Color and Odor Record any observations regarding the general condition of the samples. Especially note color, turbidity and odor. #### 13.6. RECORDS - Field water quality data sheets - Field notebook #### 13.7. REFERENCES - Foxboro Analytical Century Systems Portable Organic Vapor Analyzer Instructions and Service Manual. - HNU Systems Inc., 1975, Instruction Manual for Model PI101 Photoionization Analyzer. - VWR Scientific, 1976, Care and Feeding of the Mini and Digital pH Meters, Model 47. - Yellow Springs Instrument Co., 1976a, Instruction Manual, YSI Model 51B Dissolved Oxygen Meter. - Yellow Springs Instrument Co., 1976b, Instructions for YSI Models 33 and 33M S-C-T Meters. #### 14. WATER LEVEL MEASUREMENTS #### 14.1. PURPOSE To provide procedures for measuring water levels in monitor wells and piezometers. #### 14.2. DEFINITIONS Electric Water Level Sounder: An electric water level sounder is a device to measure the depth from a reference point (usually top of casing) to the water level in a well. The sounder consists of a two-wire cable on a reel with a double electrode tip. The reel houses a battery and voltmeter (or other device such as a light or buzzer) so that electrical continuity is indicated between the electrodes when submerged. The cable is graduated, indicating the length of cable in the well (Todd 1980). #### 14.3. RESPONSIBILITY The Field Team Leader is responsible for water level measurements and accurate recording of data. #### 14.4. EQUIPMENT AND MATERIALS - Electric water level sounder - Deionized
water - Extra batteries - Tape measure graduated in hundredths of feet - Watch - Pencil - Photoionization Detector (PID) - Field Water Quality Data Sheet - Water Level Data Sheet - Field notebook #### 14.5. PROCEDURES (1) Record well location, identification number, date, time, and Field Team Member initials in field notebook and on data sheets. - (2) Check headspace of the well for any organic vapors with a PID. Record reading in field notebook. - (3) Decontaminate electrode on sounder and sufficient length of cable by washing with an alkaline detergent solution and rinsing with deionized water so that only clean cable enters the well. - (4) Turn on sounder, check battery, and lower cable into well until the presence of water is indicated. - (5) Hold wire so thumb and index finger are touching the top of casing when probe just enters the water (alarm will sound). Use the north rim of the inner casing for the depth to water reference point. - (6) Raise cable until alarm stops (i.e., probe is just above water level). Lower cable until alarm sound again. Check to see if thumb and index finger are at the same location as before. - (7) Still holding the cable at the measurement point, pull an arm's length of cable from the well. With other hand, push the zero end of tape measure against thumb, holding the measurement point, and measure distance to the first downhole graduation on the cable. Measure to the nearest 1/100th of a foot. - (8) Record the time, cable and tape measure readings in the field notebook. Transfer readings to the Field Water Quality Data Sheet and the Water Level Data Sheet. - (9) Coil the downhole cable into hands to minimize contamination of the entire sounder. - (10) Decontaminate all of the cable that was downhole plus 5 ft by washing with an alkaline detergent solution and rinsing with deionized water. Decontaminate equipment between wells and at the end of each day. - (11) Wrap sounder in clean plastic after decontaminating. #### 14.6. RECORDS - Water level data sheets - Field notebook #### 14.7. REFERENCES Todd, David Keith, 1980, Subsurface Investigations of Groundwater; in Groundwater Hydrology, Second Edition, John Wiley and Sons, Inc., New York, pp. 434-435. ## APPENDIX 6 QUALITY ASSURANCE/QUALITY CONTROL FOR SOIL CHARACTERIZATION # DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE ENVIRONMENT, SAFETY AND HEALTH DIVISION ENVIRONMENTAL PROGRAMS BRANCH # COMPREHENSIVE ENVIRONMENTAL ASSESSMENT AND RESPONSE PROGRAM # PHASE 2: **ROCKY FLATS PLANT** INSTALLATION GENERIC MONITORING PLAN (Comprehensive Source and Plume Characterization Plan) QUALITY ASSURANCE/QUALITY CONTROL PLAN February 1987 DRAFT # TABLE OF CONTENTS | 1. | INTRODUCTION | 1 - 1 | |--------------------------------------|--|-------------------| | 2.
2.1.
2.2.
2.3. | PROJECT ORGANIZATION AND RESPONSIBILITY OPERATIONAL RESPONSIBILITIES ANALYTICAL LABORATORY RESPONSIBILITIES QA RESPONSIBILITY | 2-!
2-2 | | 3.1.
3.2.
3.3.
3.4.
3.5. | QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA REGULATORY AND LEGAL REQUIREMENTS LEVEL OF QUALITY ASSURANCE EFFORT ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSES COMPLETENESS, REPRESENTATIVENESS AND COMPARABILITY FIELD MEASUREMENTS | 3-1
3-1
3-2 | | 4. | SAMPLING PROCEDURES | 4-1 | | 5. | SAMPLE CUSTODY | 5 - 1 | | 6. | CALIBRATION PROCEDURES AND FREQUENCY | 6-1 | | 7. | ANALYTICAL PROCEDURES | 7-1 | | 8. | DATA REDUCTION, VALIDATION, AND REPORTING | 8-1 | | 9. | INTERNAL QUALITY CONTROL PROCEDURES | 9-1 | | 10. | PERFORMANCE AND SYSTEMS AUDITS | 10-1 | | 11. | PREVENTIVE MAINTENANCE | 11-1 | | 12. | LABORATORY DATA ASSESSMENT PROCEDURES | 12-1 | | 13. | CORRECTIVE ACTION PROCEDURES | | | 14. | QUALITY ASSURANCE REPORTS | | | 15. | REFERENCES | | | 13. | REFERENCES | 1 7-1 | # **TABLES** | 3.1. | Analysis Plan for Aqueous Samples | 3-5 | |------|---|------| | 3.2. | Analysis Plan for Soil/Sediment Samples | | | 3.3. | Analysis Plan for Radiological Analysis for Aqueous Samples | 3-9 | | 5.4. | Analysis Plan for Radiological Analysis for Soils/Sediments | | | 3.5. | Hazardous Substance List (HSL) and Contract Required | | | | Detection Limits (CRDL) | 3-15 | | 3.6. | Elements Determined by Inductively Coupled Plasma | | | | Emission or Atomic Absorption Spectroscopy | 3-20 | | | FIGURES | | | 2.1. | Quality Assurance/Quality Control Organization Chart | 2-4 | #### QUALITY ASSURANCE/QUALITY CONTROL PLAN #### 1. INTRODUCTION CEARP Phase 2 consists of CEARP Phase 2a, Monitoring Plan, and CEARP Phase 2b, Site Characterization (Remedial Investigation). This Quality Assurance, Quality Control (QA/QC) Plan is one component of the Monitoring Plan for Rocky Flats Plant. The Monitoring Plan typically consists of five parts: Synopsis, Sampling Plan, Technical Data Management Plan, Health and Safety Plan, and Quality Assurance/Quality Control Plan. Because of the Compliance Agreement made by the State of Colorado, Environmental Protection Agency, and the DOE, this Monitoring Plan also includes a Feasibility Study Plan. The Synopsis provides a discussion of the current situation and serves as an introduction to the other plans. CEARP uses a three-tiered approach in preparing the monitoring plans: the CEARP Generic Monitoring Plan (CGMP) (DOE, 1986b), the Installation Generic Monitoring Plan (IGMP), and the Site-Specific Monitoring Plans (SSMPs). The CGMP Quality Assurance/Quality Control (QA/QC) Plan provides the generic guidelines and procedures that will be employed during CEARP Phase 2 site characterization (remedial investigation) to ensure the reliability of data collected at CEARP sites. It is intended to establish a general quality assurance/quality control policy and to provide the framework for more specific quality assurance/quality control requirements to be employed at each installation and at each site. This IGMP Quality Assurance/Quality Control Plan provides installation generic information and procedures, whereas the SSMPs will provide site-specific detail regarding locations, types and number of samples. This IGMP is the Comprehensive Source and Plume Characterization Plan required by the Compliance Agreement. Therefore, the acronym used to refer to this plan is IGMP/CSPCP. According to DOE policy, DOE activities shall maintain programs of quality assurance (DOE Order 5700.6B). In the area of environmental protection, quality assurance plans must be integrated with the DOE implementation of CERCLA (DOE Order 5480.14). CEARP Phase 2b site characterizations (remedial investigations) will be implemented using procedures to assure that the precision, accuracy, completeness, and representativeness of data are known and documented. At a minimum, this will include adherence to the CEARP CGMP, IGMP/CSPCP, and SSMP Quality Assurance/Quality Control Plans, and may include preparation of written Quality Assurance/Quality Control Plans covering each aspect of the project performed. This IGMP/CSPCP Quality Assurance/Quality Control Plan presents the organization, objectives, functional activities, and specific quality assurance and quality control activities associated with the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. The Quality Assurance/Quality Control Plan is designed to achieve specific data quality goals for CEARP Phase 2b site characterizations (remedial investigations). Appendix A includes the quality assurance protocols for all laboratory services to be provided under CEARP Phase 2b site characterizations (remedial investigations). A brief description of the CEARP Phase 2b site characterization (remedial investigation) and background can be found in the Synopsis. For a more in-depth background description, see the CEARP Phase 1 report. #### 2. PROJECT ORGANIZATION AND RESPONSIBILITY Project organization and responsibility are divided among DOE. Los Alamos National Laboratory, and Rockwell International as described below. Los Alamos National Laboratory has the primary responsibility to implement CEARP under the guidance of DOE-Albuquerque Operations Office. However, operational responsibilities have been assigned to Rockwell International at Rocky Flats Plant for the site characterizations (remedial investigations). The DOE-Rocky Flats Plant Area Office is responsible for the function of the Rocky Flats Plant. Because of this responsibility, the DOE-Rocky Flats Plant Area Office will provide additional guidance to its contractor, Rockwell International, in implementation of the CEARP Phase 2b site characterizations (remedial investigations). Project organization is shown in Figure 2.1. The responsibilities of the various personnel can be divided into operational, laboratory, and quality assurance responsibilities, as follows. #### 2.1. OPERATIONAL RESPONSIBILITIES Assistant Secretary for the Environment. The DOE Assistant Secretary for the Environment appoints Headquarters investigation boards and establishes the scope of Headquarters investigations (DOE Order 5484.1). DOE-wide Environmental Surveys and Audits originate from the Assistant Secretary. Environmental Surveys and Audits. Headquarters Environmental Survey Teams have been directed to conduct one-time environmental surveys and sampling of DOE facilities. These surveys are independent of CEARP activities at Rocky Flats Plant, but data from survey team sampling will be utilized in the CEARP characterization of Rocky Flats Plant. A Headquarters environmental survey team visited the Rocky Flats Plant site in 1986. The results of the survey will be used as an internal management tool by the Secretary and Undersecretary of DOE. Audits are a function of the Office of the
Assistant Secretary for the Environment. Audit teams provide quality control for the implementation of environmental monitoring at DOE facilities. Although independent of CEARP, audit teams complement CEARP activities by providing additional quality assurance. DOE-Albuquerque Operations Office Environmental Programs Branch. The DOE-Albuquerque Operations Office, Environmental Programs Branch, is responsible for overseeing all environmental programs within DOE-Albuquerque Operations and conducting special assessments such as CEARP. DOE-Rocky Flats Area Office. The DOE Rocky Flats Area Office is responsible for the missions of the Rocky Flats Plant, including environmental protection. The DOE Rocky Flats Area Office oversees the integration of Rocky Flats Plant resources with CEARP activities at Rocky Flats Plant. Rockwell International. Rockwell International, as prime contractor to DOE, provides support to DOE in accomplishing the mission of Rocky Flats Plant, including environmental protection. Rockwell International will perform the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. Los Alamos National Laboratory. Los Alamos National Laboratory manages the CEARP program, providing direction, oversight and review, and preparing final reports. #### 2.2. ANALYTICAL LABORATORY RESPONSIBILITIES Analytical laboratory responsibilities include performing analytical services, and providing quality assurance. Rockwell International will perform the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. This IGMP/CSPCP provides guidance for quality assurance programs to be implemented by - field laboratory operations - analytical laboratories - geotechnical laboratories - radiological laboratories. #### 2.3. QA RESPONSIBILITY Quality assurance responsibilities are to monitor and review the procedures used to perform all aspects of site characterizations (remedial investigations), including data collection, analytical services, data analysis, and report preparations. Primary responsibility for project quality rests with the Rockwell International CEARP Manager. Ultimate responsibility for project quality rests with DOE. Figure 2.1. Quality Assurance/Quality Control Organization Chart. #### 3. QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA The overall quality assurance objective is to develop and implement procedures for field sampling, field testing, chain of custody, laboratory analysis, and reporting that will assure quality as specified in DOE orders governing quality assurance and environmental protection. Specific procedures to be used for sampling, chain-of-custody, audits, preventive maintenance, and corrective actions are described in other sections of this IGMP Quality Assurance/Quality Control Plan. The purpose of this section is to define quality assurance goals for accuracy; precision and sensitivity of analysis; and completeness, representativeness, and comparability of measurement data from all analytical laboratories. Quality assurance objectives for field measurements are also discussed. For some field activities, samples will not be collected, but measurements will be taken where quality assurance concerns are appropriate (e.g., field measurements of pH, temperature, and elevations). The primary quality assurance objective in activities where samples are not collected is to obtain reproducible measurements to a degree of accuracy consistent with their intended use and to document measurement procedures. #### 3.1. REGULATORY AND LEGAL REQUIREMENTS Data used to evaluate compliance with the National Interim Primary Drinking Water Standards, State of Colorado water-quality standards, or water-quality criteria for agricultural or industrial use will have method detection limits as specified by the analytical method used, as appropriate. #### 3.2. LEVEL OF QUALITY ASSURANCE EFFORT Field duplicates, field blanks, and trip blanks will be taken and submitted to the analytical laboratories to provide a means to assess data quality resulting from field sampling. Duplicate samples will be analyzed to check for sampling reproducibility. Field and trip blanks will be analyzed to check for procedural contamination and/or ambient site conditions that are causing sample contamination. Trip blanks will be analyzed to check for contamination during packaging and shipment. Because volatile organic compounds are a class of contaminants most likely to be introduced to the sample by the sample container, there will be one trip blank per batch of samples designated for volatile organic compound analysis (shipping container). There will be one duplicate and one field blank for every 10 investigative samples collected. For laboratory organic analysis, matrix spikes and matrix spike duplicates will be used. The general level of quality assurance effort for organic analysis will be one matrix spike and one matrix spike duplicate prepared for every 20 samples of similar concentration and/or similar sample matrix, whichever is greater. In addition to field check samples, water samples of known concentration traceable to either EPA or NBS standards will be prepared for inorganic and radiological analyses. The general level of quality assurance effort for inorganic analyses will be one duplicate known sample and one duplicate field sample for every 10 investigative samples to check analytical reproducibility. Soil samples selected for geotechnical testing will include one field duplicate for each 20 analyses being performed, if possible, but will not include blanks. The groundwater, surface water, and soil samples collected at Rocky Flats Plant during CEARP Phase 2 will be analyzed using the analytical methods specified in Tables 3.1, 3.2, 3.3, and 3.4. The level of laboratory quality assurance effort will correspond to the procedures outlined in Appendix A. #### 3.3. ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSES The fundamental quality assurance objective with respect to accuracy, precision, and sensitivity of laboratory analytical data is to achieve the quality control acceptance criteria of the analytical protocols. Sensitivities required for analyses of radionuclides, organics, metals, and other inorganic compounds, in both aqueous and solid matrices will be the detection limits shown in Tables 3.1, 3.2, 3.3, 3.4; 3.5, and 3.6. Achieving these detection limits depends on the sample matrix. Highly contaminated samples requiring dilution will have detection limits higher than those detected. The accuracy of field laboratory measurements of groundwater and surface water pH will be assessed through pre-measurement calibrations and post-measurement verifications using at least two standard buffer solutions. The two measurements must each be within +0.05 standard units of buffer solution values. Precision will be assessed through replicate measurements of every tenth sample. The standard deviation of four replicate measurements must be less than or equal to 0.1 standard units. (The electrode will be withdrawn, deionized-rinsed and re-immersed between each replicate. The calibration and verification will be done before the first replicate and after the last replicate.) The instrument used will be capable of providing measurements to 0.01 standard units. The geotechnical and field data will be considered accurate if the quality assurance criteria with respect to equipment, solutions, and calculations are met, and if adherence to appropriate methods can be documented during a systems audit. #### 3.4. COMPLETENESS, REPRESENTATIVENESS AND COMPARABILITY The laboratories will provide data meeting quality control acceptance criteria as described in Appendix A. Laboratories will provide completely valid data (IGMP/CSPCP QA/QC Plan, Section 8); the reasons for any variances from 100 percent completeness will be documented in writing. #### 3.5. FIELD MEASUREMENTS Measurement data will be generated in many field activities. These activities may include, but are not limited to, the following: - using geophysical surveys - documenting time and weather conditions - locating and determining the elevation of sampling stations - measuring pH, conductivity, and temperature of water samples - qualitative organic vapor screening of solid samples using a photoionization detector (PID) or an organic vapor analyzer (OVA) - measuring water levels in a borehole or well - standard penetration testing - calculating pumping rates - verifying well-development and presampling purge volumes - performing hydraulic conductivity tests The general quality assurance objective for such measurement data is to obtain reproducible and comparable measurements to a degree of accuracy consistent with the intended use of the data through the documented use of standardized procedures. Procedures for performing these activities and standardized formats for documenting them are presented in the CGMP and IGMP/CSPCP Sampling Plans. These procedures may be incorporated by reference (EPA methods) or included as appendices. Standardized formats for documenting data collection are included in the Technical Data Management Plan. Table 3.1. Analysis Plan for Aqueous Samples* | - 2 | | | | • | | 7.65 | | | |-------------------------|------------------------------------|------------------------|--------------------|---|------------------|---|------------------------|--------------------| | FLATS PLANT | Analyte | Method | Detection
Limit | Sample
Container | Sample
Votume | Preservations | Holding
Time (days) | Reporting
Units | | INT IGMP/CSPCP | HSL Volatile | Ref. 1 | x ³ | 40 ml vial (2)
w/teflon lined
silicone rubber
septum | 40 ml | Cold, 4 ⁰ C ⁹ | 14 | ug/l | | SPCP | HSL Base/Neutral/Acid ¹ | Ref. 2 | χ ³ | Amber G, 1L | 1 1. | Cold, 4°c ⁹ | 7/40 ⁷ | υg/L | | Draft |
HSL Pesticide/PCB | Ref. 3 | λ ³ | Amber G, 1L | 1 : | cold, 4°c9 | 7/40 | ug/L | | | HSL Inorganic ² | EPA 200.78 | K ³ | P, G, 1L | 1 (| рн<2, м/ни0₃ | 180 | ug/l | | February 1987 | Cyanide | EPA 335 ⁸ | x ³ | P, G, 1L | 0.5 ι | рн>11, м/маОн ⁹ | 14 | ug/L | | 1987 | pH ⁴ | EPA 150.18 | 0.1 pH unit | P, G | N/A | None | field Meas. | pH unit | | (Rev | Sp. Conductivity ⁴ | EPA 120.18 | 1 | P, G | N/A | None | field Meas. | umho/cm | | ision 1 | Temperature 4 | EPA 170.18 | 0.1 | P, G | H/A | None | Field Meas. | °c | | (Revision 1) QA/QC Plan | Diss. Oxygen ⁴ | EPA 360.18 | 0.5 | c | N/A | None | field Meas. | mg/l | | /QC P | TDS | EPA 160 ⁸ | 5 | P, G 1L | Û.1 L | cold 4°c9 | 7 | mg/l | | lan | TSS | EPA 160 ⁸ | 10 | P, G 1L | 0.1 L | Cold 4°C ⁹ | 7 | mg/l | | Section 3, | Total Phosphate | EPA 365.4 ⁸ | 0.01 | P, G 1L | 1.4 | Cold 4°C, pH<2 ⁹
W/H ₂ SO ₄ | 28 | mg/l | | FLATS PLANT | Analyte Chloride, Sulfate | Method EPA 352.2 ⁸ 375.2 ⁸ | DetectionLimit | Sample Container P, G, 11. | Sample Volume | <u>Preservations</u> | Holding
Time (days) | Reporting <u>Units</u> mg/l | |-------------|-------------------------------------|---|----------------|----------------------------|---------------|-----------------------|------------------------|-----------------------------| | _ | Carbonate/Biocarbonate ⁵ | 5.m. 403 ⁶ | 10 | P. G. 1L | 1 i | Cold 4°c ⁹ | 14 | mg/l | | CSPCI | Nitrate | EPA 300.0 ⁸ | 5 | P, G, 1L | 1 1 | cold 4°c9 | 2 | mg/l | | ף סי | Hexavalent Chromium | s.м. 312в ⁶ | 0.01 | P, G, 1L | 1 L | cold 4°c | 1 | mg/l | The MSL Base/Neutral/Acid fractions analytical parameters are the MSL semivolatites. - Ref. 1. Method 624 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. Ref. 2. Method 625 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. Ref. 3. Method 608 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. ² Includes Cesium, Molybdenum, Strontium which are non-HSL metals. See Tables 3.5 and 3.6. ⁴Field Measurements. ⁵These are reported as carbonate and biocarbonate atkalinity. ⁶Standard Methods for Examination of Water and Wastewater, 15th Edition. ⁷⁷ days to extraction, analysis within 40 days of extraction. ⁸Methods for Chemical Analysis of Water and Wastes, 1983; EPA 600/4-79-020. All samples with the exception of VOA's will be filtered within 4 hours of sample collection, and preservatives added to the filtrate as specified. All samples will be kept at 40°C until delivered to the laboratory. ^{*}The SSMP Sampling Plans will define the actual suite of parameters to be analyzed for specific samples. Table 3.2. Analysis Plan for Soil/Sediment/Waste Samples* | ROCKY FLATS PLANT | Analyte HSL Volatile | <u>Method</u>
Ref. 2 | Detection Limit x ² | Sample Container 40·ml vial (2) W/teflon lined silicon rubber septa | Sample
Volume | <u>Preservations</u>
Cold, 4 ⁰ C | Holding Lime (days) | Reporting <u>Units</u> ug/kg | |-------------------|----------------------------|-------------------------|--------------------------------|--|------------------|--|----------------------|------------------------------| | IGMF | HSL Base/Neutral/Acid | Ref. 3 | x ² | Amber G, 1 L | 10 · 30 | Cold, 4°C | 7/403 | ug/kg | | IGMP/CSPCP | HSL Pesticide/PCB | Ref. 4 | X. | Amber G, 1 L | 10-30 | cold, 4°c | 7/403 | ug/kg | | | HSL Inorganic ¹ | Ref. 5 | x ² | P G, 1 L | 200 | Cold, 4 ^o C | 180 | mg/kg | | Draft | Reactivity | Ref. 6 | Kef. B | Amber G | | Cold 4°C | N/A | ug/l | | February | EP Toxicity | Ref. 7 | Ref. 9 | Amber G | 100 g | Cold 4°C | N/A | ug/l in
leachate | | y 1987 | Chloride | EPĄ 300.0 ⁵ | ბ0 ს ე /გ ⁶ | G, 1 L | 20 | Cold, 4°C | N/A | mg/kg | | | Sulfate | EPA 300.0 ⁵ | ბმ იყ/g ^ბ | G, 1 L | 20 | cold, 4°c | H/A | mg/kg | | (Revision | Nitrate | EPA 300.0 ⁵ | 60 ug/g ⁶ | G, 1 L | 20 | cold, 4°C | N/A | mg/kg | | ت
م | Cunnida | Ref. 1 | χ ² | G, 1 L | 200 | Cold, 4°C | 14 . | ing/kg | | QA/QC P | | s. m. 3128 ⁷ | 1 ug/g ⁶ | G, 1 L | 100 | Cold 4°C | 1 | mg/kg | ¹ Includes Cesium, Molybdenum, and Strontium which are non-HSL metals. Extract within 7 days, analysis within 40 days of extraction. ^{*}Reported as dry weight, % moisture reported separately. See Tables 3.5 and 3.6. See Tables 3.5 and 3.6. Extract within 7 days, a Reported as dry weight, Soil/Sediments will be I Methods for Chemical Anal Soil/Sediments will be leached with Laboratory Reagent Water (20 g soil to 50 mt water) and water extract analyzed using referenced procedure. Procedure reference: Methods for Chemical Analysis of Water and Wastes, 1983; EPA 600/4-79-020. /CSPCP #### Table 3.2. (Continued) ⁶These are estimated detection limits. Soil/sediment will be leached with Laboratory Reagent Water (5 g soil and 100 ml of water) by shaking for 2 hours, and the water extract filtered and subsequently analyzed. This is in accordance with method 3128 in Standard Methods for Examination of Water and Wastewater, 15th *The SSMP Sampling Plans will define the actual suite of parameters to be analyzed for specific samples. - Ref. 1. Method 9010 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 2. Method 8240 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 3. Hethod 8270 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 4. Method 8080 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, OC 20460, Revised April 1984. - Ref. 5. Method 6010 or 7000 Series Methods "Test Hethods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revis - Ref. 6. Method 9010, 9030 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 7. Method 1310 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. | | | Table 3.3. Analy | 3.3. Analysis Plan for Radiological Analysis for Aqueous Samples | ical Analysis for | Aqueous Samples | | | |-------------------|-----------------|---|--|-------------------|---------------------------|-------------------------------|--------------------| | Analyte | Method | Detection
Limit** | Sample
Container | Sample
Volume | Preservations | Holding
<u>lime (days)</u> | Reporting
Units | | Gross alpha/beta | 1,2,3,4,6,7,8,9 | Gross a =
2pCi/L | P, 1 gal | 0.2 L | ниО ₃ to pH <2 | 180 | pci/t | | Trition | 1,2,3,8 | 400 pCI/L | G, 100 ml | 0.008 L | No preservation | ž | pci/L | | Pu-239 | 10,11 | 0.3 pci/L | P, 1 gal | 1.000 1 | HNO ₃ to pH <2 | 180 | , 1/13d | | Am·241 | 11,12 | 0.4 pci/L | P, 1 gal | 1.000 1. | HNO3 to pH <2 | 180 | pCi/L | | Isotopic U | 1,3,4,7,8,9 | u-233 + 234 = 0.6 pc1/t
u-238 = 0.6
pci/t | P, 1 gal | 0.500 L | нио ₃ to pH <2 | 180 | 1/10d | | Sr·90 | 1,3,4,8 | 1 pci/l. | P, 1 gal | 1.000 L | HHO ₃ to pH <2 | 180 | pCi/L | | *See Attachment 1 | | | | | | | | #### ATTACHMENT I - 1. U.S. Environmental Protection Agency, 1979, Radiochemical Analytical Procedures for Analysis of Environmental Samples, Report No. EMSL-LY-0539-1, Las Vegas, NV, U.S. Environmental Protection Agency. - 2. American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed., Washington, D.C., Am. Public Health Association. - 3. U.S. Environmental Protection Agency, 1976. Interim Radiochemical Methodology for Drinking Water, Report No. EPA-600/4-75-008. Cincinnati U.S. Environmental Protection Agency. - 4. Harley, J. H., ed., 1975, HASL Procedures Manual, HASL-300; Washington, D.C., U.S. Energy Research and Development Administration. - 5. Misaqi, Fazlelleh L., Monitoring Radon-222 Content of Mine Waters Informational Report 1026, U.S. Department of Interior, Mining Enforcement and Safety Administration, Denver, CO, 1975. - 6. "Radioassay Procedures for Environmental Samples," 1967, USDHEW, Section 7.2.3. - 7. "Handbook of Analytical Procedures," USAEC, Grand Junction Lab. 1970, page 196. - 8. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water." EPA-600/4-80-032, Auguat 1980, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268. - 9. "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments," U.S.G.S. Book 5, Chapter A5, 1977. - 10. "Acid Dissolution Method for the Analysis of Plutonium in Soil." EPA-600/7-79-081, March 1979, U.S. EPA Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, 1979. - 11. "Procedures for the Isolation of Alpha Spectrometrically Pure Plutonium, Uranium and Americium," by E. H. Essington and B. J. Drennon, Los Alamos National Laboratory, a private communication. - 12. "Isolation of Americium from Urine Samples," Rocky Flats Plant, Health, Safety, and Environmental Laboratories. #### ATTACHMENT 2 #### Lower Limits of Detection The detection limits presented were calculated using the formula in N.R.C. Regulatory Guide 4.14, Appendix Lower Limit of Detection, pg. 21, and follow: $LLD = 4.66 \qquad \frac{BKG}{DUR}$ (2.22) (Eff) (CR) (SR) (e-xt) (Aliq), #### Where LLD = Lower Limit of Detection in pCi per
sample unit BKG = Instrument Background in counts per minute (cpm) DUR = Duration of sample counting in minutes Eff = Counting efficiency in cpm/disintegration per minute (dpm) CR = Fractional radiochemical yield SR = Fractional radiochemical yield of a known solution X = The radioactive decay constant for the particular radionuclide the elapsed time between sample collection and counting. In that LLD is a function of many variables including sample matrix, sample volume, and other factors, the limits presented are only intended as guides to order-of-magnitude sensitivities and, in practice, can easily change by a factor of two or more even for the conditions specified. | | | lable 3.4. Anal | 3.4. Analysis Plan for Radiological Analysis for Soils/Sediments | gical Analysis for | - Soils/Sediments | | | |-------------------------|--------------|--|--|--------------------|-------------------|-------------------------------|-----------| | Analyte | Method* | Detection
Limit** | Sample
Container | Sample
Size (9) | Preservations | Holding
<u>Time (days)</u> | Reporting | | Gross alpha/beta | 1,2,3,4,6,7, | Gross a = 4 pci/g
Gross b = 10 pci/g | 6, 11. | . 0 | * | ž | pC i / g | | Pu-239 | 10,11 | 6.3 pci/g | 6, 1 1 | - | * | 4 | pc1/9 | | Am·241 | 11,12 | 0.3 pci/g | 6, 1 L | - | ٧ ٢ | * | pCi/g | | Isotopic U | 1,3,4,7,8,9 | u-233 + 234
* 0.3 pci/g
u-238 * 0.3
pci/g | 6, 11 | ~ | ¥ | ₹ | pC i / g | | Sr.90 *See Attachment 1 | 1,3,4,8 | 1 pc1/9 | 6, 11. | - | K X | X | Pci/9 | | ""See Attachment 2 | | | | | | | | #### ATTACHMENT I - 1. U.S. Environmental Protection Agency, 1979, Radiochemical Analytical Procedures for Analysis of Environmental Samples, Report No. EMSL-LY-0539-1, Las Vegas, NV, U.S. Environmental Protection Agency. - 2. American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed., Washington, D.C., Am. Public Health Association. - 3. U.S. Environmental Protection Agency, 1976. Interim Radiochemical Methodology for Drinking Water, Report No. EPA-600/4-75-008. Cincinnati U.S. Environmental Protection Agency. - 4. Harley, J. H., ed., 1975, HASL Procedures Manual, HASL-300; Washington, D.C., U.S. Energy Research and Development Administration. - 5. Misaqi, Fazlelleh L., Monitoring Radon-222 Content of Mine Waters Informational Report 1026, U.S. Department of Interior, Mining Enforcement and Safety Administration, Denver, CO, 1975. - 6. "Radioassay Procedures for Environmental Samples," 1967, USDHEW, Section 7.2.3. - 7. "Handbook of Analytical Procedures," USAEC, Grand Junction Lab. 1970, page 196. - 8. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, August 1980, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268. - 9. "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments," U.S.G.S. Book 5. Chapter A5, 1977. - 10. "Acid Dissolution Method for the Analysis of Plutonium in Soil," EPA-600/7-79-081, March 1979, U.S. EPA Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, 1979. - 11. "Procedures for the Isolation of Alpha Spectrometrically Pure Plutonium, Uranium and Americium," by E. H. Essington and B. J. Drennon, Los Alamos National Laboratory, a private communication. - 12. "Isolation of Americium from Urine Samples," Rocky Flats Plant, Health, Safety, and Environmental Laboratories. #### ATTACHMENT 2 #### Lower Limits of Detection The detection limits presented were calculated using the formula in N.R.C. Regulatory Guide 4.14, Appendix Lower Limit of Detection, pg. 21, and follow: LLD = 4.66 <u>BKG</u> DUR (2.22) (Eff) (CR) (SR) (e-xt) (Aliq), #### Where | LLD | = | Lower Limit of Detection in pCi per sample unit | |-------------|---|--| | BKG | = | Instrument Background in counts per minute (cpm) | | DUR | = | Duration of sample counting in minutes | | EII | = | Counting efficiency in cpm/disintegration per minute (dpm) | | \subset R | = | Fractional radiochemical yield | | SR | = | Fractional radiochemical yield of a known solution | | X | = | The radioactive decay constant for the particular radionuclide | | t | = | the elapsed time between sample collection and counting. | In that LLD is a function of many variables including sample matrix, sample volume, and other factors, the limits presented are only intended as guides to order-of-magnitude sensitivities and, in practice, can easily change by a factor of two or more even for the conditions specified. Table 3.5. Hazardous Substance List (HSL) and Contract Required Detection Limits (CRDL)** | Volatiles CAS Number Low Water Ug/K Ug/K | | | Detec | tion Limits* | |--|-------------------------------|------------------|------------|--------------| | CAS Number ug/L ug/Kg | | | Low Watera | | | 2. Bromomethane 74-83-9 10 10 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 < | Volatiles | CAS Number | ug/L | | | 2. Bromomethane 74-83-9 10 10 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 < | 1. (1) | 74077 | | | | 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1.1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 <td></td> <td></td> <td></td> <td></td> | | | | | | 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 <td></td> <td></td> <td></td> <td></td> | | | | | | 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 | | | | | | 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5
18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 | | | | | | 7. Carbon Disulfide 75-15-01 5 5 5 8 1,1-Dichloroethene 75-35-4 5 5 5 9 1,1-Dichloroethane 75-35-3 5 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 5 11. Chloroform 67-66-3 5 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 5 13. 2-Butanone 78-93-3 10 10 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 10 17. Bromodichloromethane 75-27-4 5 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5. Methylene Chloride | 75-09-2 | 6 | 5 | | 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 6. Acetone | 67-64-1 | 10 | 10 | | 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 7. Carbon Disulfide | | | | | 9. 1,1-Dichloroethane 75-35-3 5 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 5 11. Chloroform 67-66-3 5 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 5 15. Carbon Tetrachloride 56-23-5 5 5 5 16. Vinyl Acetate 108-05-4 10 10 10 17. Bromodichloromethane 75-27-4 5 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 5 22. Dibromochloromethane 124-48-1 5 5 | | | | | | 10. trans-1,2-Dichloroethene 156-60-5 5 11. Chloroform 67-66-3 5 12. 1,2-Dichloroethane 107-06-2 5 13. 2-Butanone 78-93-3 10 14. 1,1,1-Trichloroethane 71-55-6 5 15. Carbon Tetrachloride 56-23-5 5 16. Vinyl Acetate 108-05-4 10 17. Bromodichloromethane 75-27-4 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 19. 1,2-Dichloropropane 78-87-5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 | | | | 5 | | 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | | | 5 | | | 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 10. trans-1,2-Dienioroemene | 150-00-5 | J | <i>J</i> | | 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 11. Chloroform | 67-66-3 | 5 | 5 | | 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | | 107-06-2 | | | | 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | | | | | | 15. Carbon Tetrachloride 56-23-5 5 16. Vinyl Acetate 108-05-4 10 17. Bromodichloromethane 75-27-4 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 19. 1,2-Dichloropropane 78-87-5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 | | | | | | 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | | | | | | 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 13. Carbon Tetraemoride | 30-23-3 | J | 3 | | 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 19. 1,2-Dichloropropane 78-87-5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 | | | | 10 | | 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | | 75-27-4 | 5 | 5 | | 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 | 18. 1,1,2,2-Tetrachioroethane | 79-34-5 | 5 | 5 | | 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 | 19. 1,2-Dichloropropane | 78 -87- 5 | 5 | | | 22. Dibromochloromethane 124-48-1 5 5 | 20. trans-1,3-Dichloropropene | 100061-02-6 | | | | 22. Dibromochloromethane 124-48-1 5 5 | 21 Trichloroethene | 79-01-6 | 5 | c | | | | | | | | / S. C. L. / - C. F.I.C. P.I.O. P.O. P.O. P.O. S. | 23. 1,1,2-Trichloroethane | 79-00-5 | | | | | | | | | | | | | | | | 25. cis-1,3-Dichloropropene 10061-01-5 5 5 | 23. cis-1,3-Dichloropropene | 10061-01-3 | 5 | 5 | | 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 | 26. 2-Chloroethyl Vinyl Ether | 110-75-8 | 10 | 10 | | 27. Bromoform 75-25-2 5 | 27. Bromoform | 75-25-2 | 5 | | | 28. 2-Hexanone 591-78-6 10 10 | 28. 2-Hexanone | | | | | 29. 4-Methyl-2-pentanone 108-10-1 10 10 | 29. 4-Methyl-2-pentanone | | | | | 30. Tetrachloroethene 127-18-4 5 5 | | | | | | 127.10 4 | | 127 10 4 | J | , | | 31. Toluene 108-88-3 5 | 31. Toluene | 108-88-3 | 5 | 5 | | 32. Chlorobenzene 108-90-7 5 5 | 32. Chlorobenzene | 108-90-7 | | 5 | | 33. Ethyl Benzene 100-41-4 5 5 | 33. Ethyl Benzene | | | | | 34. Styrene 100-42-5 5 5 | | | | | | 35. Total Xylenes 100-42-5 5 5 | | | | | Table 3.5. (Continued) | | | Detec | ction Limits* | |-------------------------------|---------------------|-------------|--------------------| | | | Low Water C | Low Soil/Sedimentd | | Semi-Volatiles | CAS Number | ug/L | ug/Kg | | 36. N-Nitrosodimethylamine | 62-75-9 | 10 | 330 | | 37. Phenol | 108-95-2 | 10 | 330 | | 38. Aniline | 62-53-3 | 10 | 330 | | 39. bis(2-Chloroethyl) ether | 111-44-4 | 10 | 330 | | 40. 2-Chlorophenol | 95-57-8 | 10 | 330 | | 41. 1,3-Dichlorobenzene | 541-73-1 | 10 | 330 | | 42. 1,4-Dichlorobenzene | 106-46-7 | 10 | 330 | | 43. Benzyl Alcohol | 100-51-6 | 10 | 330 | | 44. 1,2-Dichlorobenzene | 95-50-1 | 10 | 330 | | 45. 2-Methylphenol | 95-48-7 | 10 | 330 | | 16 his/2 Chloroinesson | | | | | 46. bis(2-Chloroisopropyl | 20620 22 0 | 1.0 | 320 | | ether | 39638-32-9 | 10 | 330 | | 47. 4-Methylphenol | 106-44-5 | 10 | 330 | | 48. N-Nitroso-Dipropylamine | 621-64-7 | 10 | 330 | | 49. Hexachloroethane | 67-72-1 | 10 | 330 | | 50. Nitrobenzene | 98-95-3 | 10 | 330 | | 51. Isophorone | 78-59-1 | 10 | 330 | | 52. 2-Nitrophenol | 88-75-5 | 10 | 330 | | 53. 2,4-Dimethylphenol | 105-67-9 | 10 | 330 | | 54. Benzoic Acid | 65-85-0 | 50 | 1600 | | 55. bis(2-Chlorocthoxy) | | | | | methane | 111-91-1 | 0 1 | 330 | | 56. 2,4-Dichlorophenol | 120-83-2 | 10 | 330 | | 57. 1,2,4-Trichlorobenzene | 120-82-1 | 10 | 330 | | 58. Naphthalene | 91-20-1 | 10 | 330 | | 59. 4-Chloroaniline | 106-47-8 | 10 | 330 | | 60. Hexachlorobutadiene | 87-68-3 | 10 | 330 | | 61. 4-Chloro-3-methylphenol | | | | | (para-chloro-meta-cresol) | 59-50-7 | 10 | 330 | | 62. 2-Methylnaphthalene | 91-57-6 | 10 | 330 | | 63. Hexachlorocyclopentadiene | 77-47-4 | 10 | 330 | | 64. 2,4,6-Trichlorophenol | 88-06-2 | 10 | . 330 | | 65. 2,4,5-Trichlorophenol | 95-95-4 | 50 | | | os. 2,7,5 Trientotophenoi |)J-7J- 4 | | 1600 | | 66. 2-Chloronaphthalene | 91-58-7 | 10 | 330 | | 67. 2-Nitroaniline | 88-74-4 | 50 | 1600 | | 68. Dimethyl Phthalate | 131-11-3 | 10 | 330 | | 69. Acenaphthylene | 208-96-8 | 10 | 330 | | 70. 3-Nitroaniline | 99-09-2 | 50 | 1600 | | | | | - | Table 3.5. (Continued) | | | Detec | on Limits* | | |--|------------------|-------------|-------------------|--| | | | Low Water C | Low Soil/Sediment | | |
Semi-Volatiles | CAS Number | ug/L | ug Kg | | | 71. Acenaphthene | 83-32-9 | 10 | 330 | | | 72. 2,4-Dinitrophenol | 51-28-5 | 50 | 1600 | | | 73. 4-Nitrophenol | 100-02-7 | 50 | 1600 | | | 74. Dibenzofuran | 132-64-9 | 10 | 330 | | | 75. 2,4-Dinitrotoluene | 121-14-2 | 10 | 330 | | | 76. 2,6-Dinitrotuluene | 606-20-2 | 10 | 330 | | | 77. Diethylphthalate | 84-66-2 | 10 | 330 | | | 78. 4-Chlorophenyl Phenyl | | | | | | ether | 7005-72-3 | 10 | 330 | | | 79. Fluorene | 86-73-7 | 10 | 330 | | | 80. 4-Nitroaniline | 100-01-6 | 50 | 1600 | | | 81. 4,6-Dinitro-2-methyl- | | | | | | phenol | 534-52-1 | 50 | 1600 | | | 82. N-nitrosodiphenylamine
83. 4-Bromophenyl Phenyl | 86 - 30-6 | 10 | 330 | | | ether | 101-55-3 | 10 | 330 | | | 84. Hexachlorobenzene | 118-74-1 | 10 | 330 | | | 85. Pentachloropphenol | 87-86-5 | 50 | 1600 | | | 86. Phenanthrene | 85-01-8 | 10 | 330 | | | 87. Anthracene | 120-12-7 | 10 | 330 | | | 88. Di-n-butylphthalate | 84-74-2 | 10 | . 330 | | | 89. Fluoranthene | 206-44-0 | 10 | 330 | | | 90. Benzidine | 92-87-5 | 50 | 1600 | | | 91. Pyrene | 129-00-0 | 10 | 330 | | | 92. Butyl Benzyl | | | 332 | | | Phthalate | 85-68 - 7 | 10 | 330 | | | 93. 3,3'-Dichlorobenzidine | 91-94-1 | 20 | 660 | | | 94. Benzo(a)anthracene
95. bis(2-ethylhexyl) | 56-55-3 | 10 | 330 | | | phthalate | 117-81-7 | 10 | 330 | | | 96. Chrysene | 218-01-9 | 10 | 330 | | | 97. Di-n-octyl Phthalate | 117-84-0 | 10 | 330 | | | 98. Benzo(b)fluoranthene | 205-99-2 | 10 | 330 | | | 99. Benzo(k)fluoranthene | 207-08-9 | 10 | 330 | | | 100. Benzo(a)pyrene | 50-32-8 | 10 | 330 | | | 101. Indeno(1,2,3-cd)pyrene | 193-39-5 | 10 | 330 | | | 102. Dibenz(a,h)anthracene | 53-70-3 | 10 | 330 | | | 103. Benzo(g,h,i)perylene | 191-24-2 | 10 | 330 | | | · · · · · · · | _ | | | | Table 3.5. (Continued) | | | Detection Limits* | | | | | |---------------------------------------|------------|------------------------|--------------------|--|--|--| | | | Low Water ^e | Low Soil/Sediment1 | | | | | Pesticides | CAS Number | ug/L | ug/Kg | | | | | 104. alpha-BHC | 319-84-6 | 0.05 | 8.0 | | | | | 105. beta-BHC | 319-85-7 | 0.05 | 8.0 | | | | | 106. delta-BHC | 319-86-8 | 0.05 | 8.0 | | | | | 107. gamma-BHC (Lindane) | 58-89-9 | 0.05 | 8.0 | | | | | 108. Heptachlor | 76-44-8 | 0.05 | 8.0 | | | | | 109. Aldrin | 309-00-2 | 0.05 | 8.0 | | | | | 110. Heptachlor Epoxide | 1024-57-3 | 0.05 | 8.0 | | | | | 111. Endosulfan I | 959-98-8 | 0.05 | 8.0 | | | | | 112. Dieldrin | 60-57-1 | 0.10 | 16.0 | | | | | 113. 4,4'-DOE | 72-55-9 | 0.10 | 16.0 | | | | | 114. Endrin | 72-20-8 | 0.10 | 16.0 | | | | | 115. Endosulfan II | 33213-65-9 | 0.10 | 16.0 | | | | | 116. 4,4°-DDD | 72-54-8 | 0.10 | 16.0 | | | | | 117. Endrin Aldehyde | 7421-93-4 | 0.10 | 16.0 | | | | | 118. Endosulfan Sulfate | 1031-07-8 | 0.10 | 16.0 | | | | | 119. 4,4-'DDT | 50-29-3 | 0.10 | 16.0 | | | | | 120. Endrin Ketone | 53494-70-5 | 0.10 | 16.0 | | | | | 121. Methoxychlor | 72-43-5 | 0.5 | 80.0 | | | | | 122. Chlordane | 57-74-9 | 0.5 | 80. 0 | | | | | 123. Toxaphene | 8001-35-2 | 1.0 | 160.0 | | | | | 124. AROCLOR-1016 | 12674-11-2 | 0.5 | 80.0 | | | | | 125. AROCLOR-1221 | 11104-28-2 | 0.5 | 80.0 | | | | | 126. AROCLOR-1232 | 11141-16-5 | 0.5 | 80.0 | | | | | 127. AROCLOR-1242 | 53469-21-9 | 0.5 | 80.0 | | | | | 128. AROCLOR-1248 | 12672-29-6 | 0.5 | 80.0 | | | | | 129. AROCLOR-1254 | 11097-69-1 | 1.0 | 160.0 | | | | | 130. AROCLOR-1260 | 11096-82-5 | 1.0 | 160.0 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | ^aMedium Water Contract Required Detection Limits (CRDL) for Volatile HSL Compounds are 100 times the individual Low Water CRDL. bMedium Soil/Sediment Contract Required Detection Limits (CRDL) for Volatile HSL Compounds are 100 times the individual Low Soil/Sediment CRDL. ^CMedium Water Contract Required Detection Limits (CRDL) for Semi-Volatile HSL Compounds are 100 times the individual Low Water CRDL. dMedium Soil/Sediment Contract Required Detection Limits (CRDL) for Semi-Volatile HSL Compounds are 60 times the individual Low Soil/Sediment CRDL. # Table 3.5. (Continued) eMedium Water Contract Required Detection Limits (CRDL) for Pesticide HSL Compounds are 100 times the individual Low Water CRDL. Medium Soil/Sediment Contract Required Detection Limits (CRDL) for Pesticide HSL compounds are 60 times the individual Low Soil/Sediment CRDL. *Detection limits listed for soil/sediment are based on wet weight. The detection limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, as required by the contract, will be higher. **These are the EPA detection limits under the Contract Laboratory Program. Specific detection limits are highly matrix dependent. The detection limits listed herein are provided for guidance and may not always be achievable. Table 3.6. Elements Determined by Inductively Coupled Plasma Emission or Atomic Absorption Spectroscopy | Element | Contract Required Detection Level ^{1,2} (ug/L) | |------------|---| | <u> </u> | | | Aluminum | 200 | | Antimony | 60 | | Arsenic | 10 | | Barium | 200 | | Beryllium | 5 | | Cadmium | 5 | | Calcium | 5000 | | Chromium | 10 | | Cobalt | 50 | | Copper | 25 | | Iron | 100 | | Lead | 5 | | Magnesium | 5000 | | Manganese | 15 | | Mercury | 0.2 | | Nickel | 40 | | Potassium | 5000 | | Selenium | 5 | | Silver | 10 | | Sodium | 5000 | | Thallium | 10 | | | | | Vanadium | 50 | | Zinc | 20 | | | | | Cesium | 200 | | Molybdenum | 40 | | Strontium | 200 | | | | | Cyanide | 10 | Note: Detection limits in soil/sediment are numerically equivalent to those listed above with concentration units of mg/kg. If the sample concentration exceeds two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the contract required detection limit. This is illustrated in the example below: Higher detection levels may also be used in the following circumstances. ## Table 3.6. (Continued) For lead: Method in use - ICP Instrument Detection Limit (IDL) = 40 Sample Concentration = 85 Contract Required Detection Limit (CRDL) = 5 The value of 85 may be reported even though instrument detection limit is greater than required detection level. The instrument or method detection limit must be documented. ²These CRDL are the instrument detection limits obtained in pure water, met using the procedure in Exhibit E. The detection limits for samples may be considerably higher depending on the sample matrix. ## 4. SAMPLING PROCEDURES Procedures for collecting samples and for performing all related field activities are described in detail in Appendix A of the IGMP/CSPCP Sampling Plan. Adherence to these procedures will be confirmed by the CEARP Quality Assurance Officers (Rockwell International and subcontractor) by quality assurance audits. # 5. SAMPLE CUSTODY CEARP field custody procedures are described in Section 7.2 of the IGMP/CSPCP Sampling Plan. Laboratory custody procedures for the analytical laboratories are described in Appendix A. ## 6. CALIBRATION PROCEDURES AND FREQUENCY Standard commercial calibration procedures will be used by the analytical laboratories, as specified in Appendix A. Calibration of equipment used to perform geotechnical testing will be in accordance with that specified in the ASTM Method D 422-63 for hydrometer and sieve analyses (Annual Book of ASTM Standards, Volume 04.08, 1984). The equipment calibrations, including those for ovens, thermometers and balances, shall be done at a minimum of every six months and prior to large scale testing. Field instruments will be calibrated according to procedures presented in Appendixes A and B of the IGMP/CSPCP Sampling Plan. A calibration log book will be assigned to each field instrument, and all calibrations will be documented in the log books. # 7. ANALYTICAL PROCEDURES Laboratory analyses will follow methods described in Tables 3.1, 3.2, 3.3, and 3.4. Deviation from those methods, if required, will be presented in the SSMPs. #### 8. DATA REDUCTION, VALIDATION, AND REPORTING Analytical laboratories will provide results to the Rockwell International CEARP Manager, the Subcontractor Project Manager, and Quality Assurance Officers. These data will include results and documentation for blanks and duplicates, matrix spikes, and forms summarizing analytical precision and accuracy. Analytical data, including quality control sample analysis, will be entered into the technical data base. The analyses will be grouped into lots, with quality control samples associated with a particular lot. The analyses of quality control samples will be compared to theoretical known concentrations of those samples. If analyses do not meet acceptance criteria, the analytical laboratory may be asked to re-analyze the samples for parameters which do not exceed holding times. Analyses which cannot meet acceptance criteria, will be labelled as unacceptable. All parameter-specific values for a lot in which the quality control analyses did not meet acceptance criteria, will be removed from the technical data base. Acceptance criteria for analyses of parameters for quality control samples (knowns) will be based on the theoretical known value furnished by the laboratory that prepared the sample. The theoretical known value is stated as a range of values. The analysis of the sample must be within the stated range of the theoretical known, plus or minus 10% of the range. An exception is analyses at or near the limit of detection. If the lower limit of the range of the theoretical known value is less than twice the limit of detection, an acceptable analysis includes the range from the limit of detection to the upper limit of the theoretical range, plus 10%. Analytical reports from a field laboratory, if used, and the geotechnical laboratory will include all raw data, documentation of reduction methods, and related quality
assurance/quality control data. These data will be assessed by verification of reduction results and confirmation of compliance with quality assurance/quality control requirements. Raw data from field measurements and sample collection activities used in project reports will be appropriately identified. Where data have been reduced or summarized, the method of reduction will be documented. The Quality Assurance Officers will review results of Quality Control-acceptance evaluations and will document acceptance or non-acceptance of data. The Quality Assurance Officers will maintain records of quality control-acceptance tests. These records will be subject to independent audit, which may include Los Alamos National Laboratory. ## 9. INTERNAL QUALITY CONTROL PROCEDURES Internal quality control procedures for the laboratory are those specified in Appendix A. These specifications include types of audits required (e.g., sample spikes, surrogate spikes, reference samples, controls, and blanks), frequency of audits, compounds to be used for sample spikes and surrogate spikes, and quality control acceptance criteria for audits. The quality control checks and acceptance for data from a field laboratory, if used, and the geotechnical laboratory are described above in Sections 3.2 and 3.3. Quality control procedures for field measurements (pH, conductivity, and temperature) are limited to checking the reproducibility of the measurement in the field by obtaining multiple readings and/or by calibrating the instruments (where appropriate). Quality control of field sampling will involve collecting field duplicates and blanks. #### 10. PERFORMANCE AND SYSTEMS AUDITS For each activity where samples are collected, a performance audit investigating conformance with quality control procedures will be conducted (Appendix A) at the discretion of the Rockwell International CEARP manager, Subcontractor Project Manager, and Quality Assurance Officers. This audit will be scheduled to allow oversight of as many different field activities as possible. This audit will be performed by the Quality Assurance Officers or their designees. A written report of the results of this audit, along with a notice of nonconformity (if necessary), will be submitted to the following individuals: - Rockwell International CEARP Manager - Subcontractor Project Manager - Subcontractor Site Manager At least one systems audit will be performed during the project. The audit will verify that a system of quality control measures, procedures, reviews, and approvals was established for all activities and is being used by project personnel. It will also verify that the system for project documentation is being used and that all quality control records, along with required quality control reviews, approvals, and activity records are being maintained. A standard checklist for systems audits will be used. The systems audit will be conducted by the Quality Assurance Officers and/or Los Alamos National Laboratory. A final report will be prepared which summarizes any deviations from approved methods and their impacts on the project results. After consultation with the CEARP Manager (and Subcontractor Project Manager), the Quality Assurance Officers may schedule systems audits of the participating laboratories. At a minimum, the systems audit would include inspection of laboratory notebooks, control sheets, logsheets, computer files, and equipment calibration and maintenance records. If scheduled, system audits will be executed by individuals identified in Section 2.3 of this document. Performance and systems audits of analytical laboratories will be scheduled and executed by the laboratory Quality Assurance Officers. Performance audits are conducted at least semiannually. #### 11. PREVENTIVE MAINTENANCE This section applies solely to field equipment. Preventive maintenance will be addressed by checks of equipment prior to initiation of field operations, to allow time for replacement of malfunctioning equipment. The Subcontractor Site Manager will be responsible for implementing and documenting these procedures on a weekly basis during the period of use. ## 12. LABORATORY DATA ASSESSMENT PROCEDURES Analytical data from laboratories is assessed for accuracy, precision and completeness by the laboratory Quality Assurance Officers, using standard procedures. Assessment of data generated by analytical laboratories is initiated and continued at three administrative levels. The bench chemist directly responsible for the test knows current operating acceptance limits. He/she can directly accept or reject generated data and consult with his/her immediate supervisor for any corrective action. Once the bench chemist has reported the data as acceptable, he/she initials the report sheet. Any out-of-control results are flagged and a note is made as to why the results were reported. The chief chemist receives the data sheets and reviews the quality control data that accompanied the sample run. After checking the reported data for completeness and quality control results, the chief chemist either initials the report sheet or sends it back to the bench chemist for rerunning of samples. The Quality Control Coordinator reviews data forwarded to him/her as acceptable by the chief chemist. Any remaining out-of-control results that, in the opinion of the Quality Control Coordinator, do not necessitate rerunning of the sample, are flagged, and a memo is written to the data user regarding utility of the data. Data generated from all analyses are given a final review by the laboratory Quality Assurance Officers. #### 13. CORRECTIVE ACTION PROCEDURES The Quality Assurance Officers and their audit teams will prepare a report describing the results of the performance and/or system audits. If unacceptable conditions (e.g., failure to have/use procedures), unacceptable data, nonconformity with the quality control procedures, or a deficiency are identified, the Quality Assurance Officers will notify the Rockwell International CEARP Manager of the results of the audit in writing. They will also state if the nonconformity is of significance for the program and recommend appropriate corrective actions. The Rockwell International CEARP Manager will be responsible for ensuring that corrective is developed and initiated and that, if necessary, special expertise not normally available to the project team is made available. The subcontractor will be responsible for carrying out corrective actions. The subcontractor will also ensure that additional work is not performed until the nonconformity is corrected. Corrective action may include - reanalyzing the samples if holding time permits, - resampling and reanalyzing, - evaluating and amending the sampling and analytical procedures, and - accepting the data and acknowledging its level of uncertainty. The Rockwell International CEARP Manager will be responsible for ensuring that corrective action was taken, and that it adequately addressed the nonconformity. After corrective action is taken, the Quality Assurance Officer responsible for the audit will document its completion in a written report. The report will indicate any identified findings, corrective action taken, follow-up action, and final recommendations. The report will be sent to the Rockwell International CEARP Manager. Project staff will be responsible for initiating reports on suspected nonconformities in field activities and deliverables or documents. ## 14. QUALITY ASSURANCE REPORTS The Rockwell International CEARP Manager will rely on written reports, memoranda documenting data assessment activities, performance and systems audits, nonconformity notices, corrective action reports, and quality assurance notices to enforce quality assurance requirements. The Los Alamos National Laboratory will be issued a written quality assurance report at the end of each stage of site characterization (remedial investigation) by the Rockwell International CEARP Manager. Records will be maintained to provide evidence of quality assurance activities. Proper maintenance of quality assurance records is essential to provide support for evidential proceedings and to assure overall quality of the investigation. A quality assurance records index will be started at the beginning of the project. All information received from outside sources or developed during the project will be retained by the project team. Upon termination of an individual task or work assignment, working files will be processed for storage as quality assurance records. Upon termination of the project, complete documentation records (for example, chromatograms, spectra, and calibration records) will be archived as required by DOE Order 1324.2A (Records Deposition). The Rockwell International CEARP Manager and the Los Alamos National Laboratory CEARP Rocky Flats Plant Team Leader will be responsible for ensuring that the Quality Assurance records are being properly stored and that they can be retrieved. # 15. REFERENCES DOE 1986b: "Comprehensive Environmental Assessment and Response Program Phase 1: Draft Installation Assessment Rocky Flats Plant," US Department of Energy unnumbered draft report, April 1986. # APPENDIX A QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) ## 1. LABORATORY QA/QC PROGRAM This appendix to the quality assurance/quality control plan describes the organization and procedures used to produce reliable analytical data. These procedures are applicable to performing chemical, radiological, and geotechnical analyses on waste or environmental samples as appropriate. The ultimate responsibility for the generation of reliable laboratory data rests with the laboratory management. Laboratory management is vested with the authority to establish those policies and procedures to ensure that only data of the highest attainable caliber are produced. Laboratory management, as well as the laboratory Quality Assurance/Quality Control Officer are responsible
for the implementation of the established policies and procedures. Laboratory management has the following responsibilities: - direct implementation of the quality assurance program, - ensure that their personnel are adequately trained to perform analyses. - ensure that equipment and instrumentation under their control are calibrated and functioning properly, and - review and perform subsequent corrective action on internal and external audits. The Quality Assurance/Quality Control Officer has the following responsibilities: - on-going review of individual quality assurance procedures. - providing assistance in the development and implementation of specific quality assurance plans for special analytical programs. - coordination of internal and external quality assurance audits, - coordination of quality assurance training, - review of special project plans for consistency with organizational requirements and advising laboratory management of inconsistencies, and - overall coordination of the laboratories' quality assurance program manual. #### 1.2. SAMPLE MANAGEMENT On notification of the sampling and analyses effort, the laboratory will create a file to maintain records associated with the activity. In addition to administrative information, requests for sample containers, preservatives, and required analyses will be included in the file. Sample bottles will be prepared by the laboratory and made available to the sampling team. The bottles will be prepared according to the analysis plan procedures and will include sample preservatives appropriate to the analytes and matrices of concern. Addition of preservatives to sample shall be recorded on chain-of-custody forms. Samples received at the laboratories will be inspected for integrity, and any field documentation will be reviewed for accuracy and completeness. Chain-of-custody and sample integrity problems will be noted and recorded on the chain-of-custody forms during sample log-in. Chain-of-custody forms and deficiency notices will be maintained in the file. Any deficiencies will be brought to the attention of the Rockwell International CEARP Manager who will advise the laboratory on the desired disposition of the samples. Each sample that is received by the laboratory will be assigned a unique sequential sample number which will identify the sample in the laboratory's internal tracking system. References to a sample in any communication will include the assigned sample number. Samples will be stored in a locked refrigerator at 4°C. The temperature of the storage refrigerators will be monitored and recorded daily by the sample custodian. Sample fractions and extracts will also be stored under these same conditions. #### 1.3. ANALYTICAL SYSTEMS ## 1.3.1. Instrument Maintenance Instruments will be maintained in accordance with manufacturers' specifications. More frequent maintenance may be dictated dependent on operational performance. Instrument logs will be maintained to document the date, type, and reason for any maintenance performed. Contracts on major instruments with manufacturers and service agencies may be used to provide routine preventive maintenance and to ensure rapid response to emergency repair service. ## 1.3.2. Instrument Calibration Before any instrument is used, it will be calibrated using known reference materials. All sample measurements will be made within the calibrated range of the instrument. A record of calibration will be kept in an equipment log. #### 1.3.3. Personnel Training Prior to conducting analyses on an independent basis, analysts will be trained by experienced personnel in the complete performance of the analytical method. Analysts may require training at instrument manufacturers' training courses. The analyst will be required to independently generate data on several method and/or matrix spikes to demonstrate proficiency in that analytical method. The type of data to be generated will be dependent on the analytical method to be performed. Results of this "certification" will be reviewed by laboratory management for adequacy. Method blanks and method spikes will be required in every lot of samples analyzed, thus performance on a day-to-day basis can be monitored. Laboratory management and the Laboratory Quality Assurance/Quality Control Officer are responsible for ensuring that samples are analyzed by only competent analysts. #### 1.4. ANALYTICAL METHODS # 1.4.1. Gas Chromatography/Mass Spectroscopy Mass spectrometers will be tuned on a daily basis to manufacturer's specifications with FC-43. In addition, once per shift (8 hours) these instruments will be tuned with decafluorotriphenylphosphine (DFTPP) or 4-bromo-fluorobenzene (BFB) for semi-volatiles or volatiles, respectively. Ion abundance will be within the window dictated by the requirements of the specific protocols. Once an instrument has been tuned, initial calibration curves for analytes (appropriate to the analyses to be performed) will be generated for at least three solutions containing known concentrations of authentic standards of compounds of concern. The calibration curve will bracket the anticipated working range of analyses. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. During each operating shift, a midpoint calibration standard will be analyzed to verify that the instrument responses are still within the initial calibration determinations. The calibration check compounds will be those analytes used in the EPA contract laboratory program's multicomponent analyses (e.g., priority pollutants and hazardous substances list) with the exception that benzene will be used in place of vinyl chloride (volatiles) and di-n-octyl phthalate will be deleted from the semi-volatile list. The response factor drift will be calculated and recorded. If significant (>30%) response factor drift is observed, appropriate corrective action will be taken to restore confidence in the instrumental measurements. All GC/MS analyses will include analyses of a method blank, a method spike, and a method spike duplicate in each lot of samples. In addition, appropriate surrogate compounds specified in EPA methods will spiked into each sample. Recoveries from method spikes and surrogate compounds will be calculated and recorded on control charts to maintain a history of system performance. Duplicate samples will be analyzed for analytical lots of twenty (20) or more samples. Audit samples will be analyzed periodically to compare and verify laboratory performance against standards prepared by outside sources. ## 1.4.2. Gas Chromatography and High Performance Liquid Chromatography Gas chromatographs and high performance liquid chromatographs will be calibrated prior to each day of use. Calibration standard mixtures will be prepared from appropriate reference materials and will contain analytes appropriate for the method of analysis. Working calibration standards will be prepared fresh daily. The working standards will include a blank and a minimum of three concentrations to cover the anticipated range of measurement. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentrations must be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be obtained, additional standards must be analyzed to define the calibration curve. A midpoint calibration check standard will be analyzed each operating shift (8 hours) to confirm the validity of the initial calibration curve. The check standard must be within twenty (20) percent of the initial response curve to demonstrate that the initial calibration curve is still valid. Calibration data, to include the correlation coefficient, will be entered into inhoratory notebooks to maintain a permanent record of instrument calibrations. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes and blanks will be in aqueous media. Method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determined if contamination is being introduced in the laboratory. The method spikes will be examined to determine both precision and accuracy. Accuracy will be measured by the percent recovery of the spikes; precision will be measured by the reproducibility of method spikes. ## 1.4.3. Atomic Absorption Spectrophotometry Atomic absorption spectrophotometers will be calibrated prior to each day of use. Calibration standards will be prepared from appropriate reference materials, and working calibration standards will be prepared fresh weekly. The working standards will include a blank and a minimum of five concentrations to cover the anticipated range of measurement. Duplicate injections will be made for each concentration. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentrations will be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be achieved, the instrument will be recalibrated prior to analysis of samples. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes and blanks will be in aqueous media. Method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determine if contamination is being
introduced in the laboratory and will be introduced at a frequency of one per analytical lot or five (5) percent of the samples, whichever is more. The method spikes will be examined to determine both precision and accuracy. Accuracy will be measured by the percent recovery of the spikes. The recovery must be within the range of 75-125 percent to be considered acceptable. Precision will be measured by the reproducibility of both method spikes. Results must agree within twenty (20) percent in order to be considered acceptable. ## 1.4.4. Spectrophotometric Methods Spectrophotometers will be calibrated prior to each day of use. Calibration standards will be prepared from reference materials appropriate to the analyses being performed, and working standards will include a blank and a minimum of five (5) concentrations to cover the anticipated range of measurement. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentration will be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be achieved, the instrument will be recalibrated prior to the analysis of samples. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determine if contamination is being introduced in the laboratory. Accuracy will be measured by the percent recovery of the spikes. The recovery must be in an acceptable range (based on EPA data for the method of interest) in order to be considered acceptable. Precision will be measured by the reproducibility of both method spikes. Results must agree within acceptable limits (based on EPA data) in order to be considered acceptable. #### 1.5. REFERENCE MATERIALS Whenever possible, primary reference materials will obtained from the National Bureau of Standards (NBS) or the U.S. Environmental Protection Agency (EPA). In absence of available reference materials from these organizations, other reliable sources may be sought. Reference materials will be used for instrument calibrations, quality control spikes, and/or performance evaluations. Secondary reference material may be used for these functions provided that they are traceable to an NBS standard or have been to an NBS standard within the laboratory. #### 1.6. REAGENTS Laboratory reagents will be of a quality to minimize or eliminate background concentrations of the analyte to be measured. Reagents must also not contain other contaminants that will interfere with the analyte of concern. #### 1.7. CORRECTIVE ACTIONS When an analytical system is deemed to be questionable or out-of-control at any level of review, corrective action will be taken. If possible, the cause of the out-of-control situation will be determined, and efforts will be made to bring the system back into control. Demonstration of the restoration of a reliable analytical system will normally be accomplished by generating satisfactory calibration and/or quality control sample data. The major consideration in performing corrective action will be to ensure that only reliable data are reported from the laboratory. The Rockwell International CEARP Manager will be informed of the problem and all corrective actions taken. #### 1.8. DATA MANAGEMENT ## 1.8.1. Data Collection All data will be recorded in laboratory notebooks. Laboratory notebooks will contain: - Date and time of processing - Sample numbers - Project - Analyses or operation performed - Calibration data - Quality control samples included - Concentrations/dilutions required - Instrument readings - Special observations - Analyst's signature. Copies of laboratory notebooks will be provided to the Rockwell International CEARP Manager on request. #### 1.8.2. Data Reduction Data reduction will be performed by the individual analysts. The complexity of the data reduction will be dependent on the specific analytical method and the number of discrete operations (extractions, dilutions, and concentrations) involved. For those methods utilizing a calibration curve, sample responses will be applied to the linear regression line to obtain an initial raw result which will be factored into equations to obtain the estimate of the concentration in the original sample. Rounding will not be performed until after the final result is obtained, to minimize rounding errors, and results will not normally be expressed in more than two (2) significant figures. Copies of all raw data and the calculations used to generate the final results will be retained in the laboratory file to allow reconstruction of the data reduction process at a later date. Copies of these records will be provided to the Rockwell International CEARP Manager on request. #### 1.8.3. Data Review System reviews will be performed at all levels. The individual analyst will review the quality of data through calibration checks, quality control sample results, and performance evaluation samples. These reviews will be performed prior to submission of data to the laboratory management. Laboratory management will review data for consistency and validity to determine if program requirements have been satisfied. Selected hard copy output of data (chromatograms, spectra, etc.) will be reviewed to ensure that results are interpreted correctly. Unusual or unexpected results will be reviewed, and a resolution will be made as to whether the analysis should be repeated. In addition, laboratory management, will recalculate selected results to verify the calculation procedure. Any abnormalities will be brought to the attention of the Rockwell International CEARP Manager. The Quality Assurance Officer will independently conduct a complete review of results from randomly selected samples to determine if laboratory and program quality assurance/quality control requirements have been met. Deviations from requirements will be reported to the laboratory management and Rockwell International CEARP Manager for resolution. Non-routine audits may be performed. #### 1.8.4. Data Reporting Reports will contain final results (uncorrected for blanks and recoveries), methods of analysis, levels of detection, surrogate recovery data, and method blanks data. In addition, special analytical problems, and/or any modifications of referenced methods will be noted. The number of significant figures reported will be consistent with the limits of uncertainty inherent in the analytical method. Consequently, most analytical results will be reported to no more than two (2) significant figures. Data will be reported in units commonly used for the analyses performed. Concentrations in liquids will be expressed in terms of weight per unit volume (e.g., milligrams per liter). Concentrations in solid or semi-solid matrices will be expressed in terms of weight per unit weight of sample (e.g., micrograms per grams). Reported detection limits will be those specified by the analytical method. #### 1.8.5. Data Archiving The laboratory will maintain on file all of the raw data (including calibration data), laboratory notebooks, and other pertinent documentation. This file will be maintained at the laboratory for a period of time consistent with Rocky Flats Plant's requirements. At the end of that time frame, all these records will be given to Rocky Flats Plant. ## 2. PERFORMANCE AND SYSTEM AUDITS Quality assurance audits will be conducted. System audits will be conducted at random, unscheduled intervals at least annually. Audits will be planned, organized, and clearly defined before they are initiated. Auditors will identify nonconformances or deficiencies. These will be reported and documented so that corrective actions can be initiated through appropriate channels. Corrective actions will be followed up with a compliance review. A report on each audit will be sent to the Rockwell International CEARP Manager. #### 2.1. FIELD AUDITS Unannounced field audits, investigating conformance with QA/QC procedures, will be performed. A typical checklist for this type of audit is shown in Table A-1. A written report on the results of this audit will be submitted to the Rockwell International CEARP Manager. #### 2.2. CORRECTIVE ACTION After each audit, auditors will identify nonconformances in a written nonconformance notice and initiate corrective action through the Rockwell International CEARP Manager. The nonconformance notice will describe any nonconforming conditions and set a date for response and corrective action(s). The Subcontractor Project Manager will prepare a written proposal for corrective action for review and approval by the Rockwell International CEARP Manager. When approved, the proposed corrective action(s) will be implemented. Follow-up review will be performed by the auditor to confirm that the corrective actions have been implemented. ## Table A.I. Field Audit | Site Location | | Site Manager Field Team Leader Date | | | | | | | | | |---------------|---|---------------------------------------|--|--|--|----------------|--|-----|----|-----------------------| | | | | | | | <u>—</u>
Ди | dit Ovestion | Yes | No | Comment/Documentation | | | | | | | | 1. | Was a site-specific sampling and analytical plan followed? | | | | | 2. | Was a field team leader appointed? | | | | | | | | | | | 3. | Was the site health and safety coordinator present? | | | | | | | | | | | 4. | Were
field team members familiar with the sampling plan? | | | | | | | | | | | 5. | Was a briefing held offsite, before any site work was begun, to acquaint personnel with sampling equipment and assign field responsibilities? | | | | | | | | | | | 6. | Was the daily briefing and safety check conducted? | | | | | | | | | | | 7. | Was a completed "Site Person-
nel Protection and Safety Eval-
uation Form" read and signed
by all visitors and personnel
entering the site? | · | | | | | | | | | | 8. | Was a field notebook assigned to the field team leader? | | | | | | | | | | | 9. | Were entries made in the field notebook? | | | | | | | | | | 10. Were sampling stations located 11. Did the number and location of samples collected follow the site-specific sampling plan? correctly? ## Table A.I. (Continued) | Project | Site Manager | |----------------|------------------------------| | Site Location | Field Team Leader | | Auditor | Date | | Audit Ouestion | Yes No Comment/Documentation | - 12. Were samples identified as described in the site-specific sampling plan? - 13. Were samples collected following procedures specified in the site-specific plan? - 14. Was a chain-of-custody form filled out for all samples collected? Were all sample transfers documented? - 15. Were samples preserved as specified in the site-specific sampling plan? - 16. Were the number, frequency, and type of samples (including blanks and duplicates) collected as described in the site-specific sampling plan? - 17. Were the number, frequency, and type of measurements and observations taken as specified in the site-specific sampling plan? - 18. Were blank and duplicate samples properly identified? - 19. Was a record maintained of calibration of field equipment? - 20. Was field equipment calibrated as required? ## Table A.1. (Continued) | Site Location | | Site Manager | | | | |---------------|--|-------------------|--|--|--| | | | Field Team Leader | | | | | | | | | | | | 21. | Have any procedures been revised? | | | | | | 22. | Are revisions to procedures adequately documented? | | | | | | 23. | Was the document log for chain-of-custody records and other sample traffic control forms maintained? | | | | | | 24. | Have any accountable doc- | | | | | uments been lost? 25. Did drilling and well con- 26. Were the activities being struction follow procedures outlined in the sampling plan? conducted compatible with the environmental conditions? # APPENDIX 7 # OPERATIONAL SAFETY ANALYSIS (OSA) FOR SOIL REMOVAL (Rockwell, 1988) HSE 2.03 Page 1 of 11 Jan. 28, 1988 Replaces: 03/31/87 OPERATIONAL SAFETY ANALYSIS [OSA] #### **SCOPE** An OSA is required for the operations defined in this document. OSAs establish safe practices and shall be thoughtfully prepared, and thoroughly reviewed with the identified controls carefully implemented. OSAs will be reviewed at least annually. ## 1. GENERAL RESPONSIBILITIES - 1.1 The Responsible User/Supervisor will: - 1.1.1 Assess the operations for which he/she is responsible and prepare an OSA, if required. - 1.1.2 Ensure the submission is complete, and follow the OSA through the entire safety review procedure. - 1.1.3 Secure the necessary review and approvals BEFORE initiating new operations or changes. - 1.1.4 Implement the OSA and all identified requirements. - 1.1.5 Incorporate all safety requirements specified in the OSA into the appropriate operating procedure. - 1.1.6 Instruct involved employees on prescribed operating procedures and emergency procedures. - 1.1.7 Notify the HS&E Area Engineer of any change in the operations and secure a safety review prior to implementing any change[s]. - 1.2 The HS&E Area Engineer is available to assist Responsible Users/supervisors identify operations which require OSAs and to prepare new OSAs. The HS&E Area Engineer will determine, with input from Safety Analysis, if the OSA should include a Failure Mode Effects Analysis [FMEA]. The HS&E Area Engineer will review the OSA for compliance with established codes, standards, regulations, Rocky Flats Plant practices, and will conduct periodic reviews. OSAs will be audited during the annual Multi-Discipline Audit. - 1.3 The Director of Health, Safety and Environment, will indicate his review and concurrence by signing the OSA Title and Approval Sheet [see Appendix B]. - 1.4 The Approval Authority [Director] will be satisfied that the proposed operation may be conducted safely, and will formally authorize the conduct of the operation. [see Appendix A]. - 1.5 Each employee participating in the operation is responsible to perform work in accordance with the requirements of the OSA. ## 2. WHEN REQUIRED - 2.1 This review process is MANDATORY for every Rocky Flats Plant [RFP] operation with a potential risk for serious injury, radiation exposure to personnel, or damage to property or the environment. The HS&E Area Engineer will assist in the determination of the need for an OSA during the review process based on the following criteria: - 2.1.1 Operations with a potential for exposing employees to radioactive or toxic materials in excess of established guides/limits. - 2.1.2 Unless specifically exempted by the Director of HS&E, any operation which involves a radioactive source subject to registry per HSE 18.04, Section 5.1. - 2.1.3 Any work with Occupational Safety and Health Administration or Department of Energy [DOE] defined carcinogens. - 2.1.4 Operation of accelerators, x-ray machines, radiography sources, lasers, and microwave generators [other than food preparation machines]. - 2.1.5 Pneumatic systems with high stored energy potential, such as: - 2.1.5.1 Units 6 inches and under in diameter 100psig or greater. Units over 6 inches and up to 24 inches in diameter 15 psig or greater. Units over 24 inches in diameter 5 psig or greater. - 2.1.5.2 Hydraulic pressures greater than 10,000 psig. - 2.1.5.3 High voltage greater than 20 kilovolt [kV] in a vacuum. - 2.1.5.4 Greater than 25 joules [J] of stored electrical energy in capacitors and capacitor banks. HSE 2.03 Page 3 of 11 Jan. 28, 1988 Replaces: 03/31/87 - 2.1.6 Any work with materials having a health hazard rating of FOUR in the Hazardous Material Handbook. - 2.1.7 Work with explosives. - 2.1.8 The use and storage of firearms and ammunition. - 2.1.9 Operations with potential for exposing employees to environmental conditions in excess of established guides or limits [i.e., noise, heat, etc.]. - 2.1.10 Any work involving flammable liquids as defined in HSE Manual Procedure 9.05, "Handling and Storage of Flammable Liquids for Fire Safety," Section 1.1. - 2.1.11 Any operation identified as hazardous by the HSE Area Engineer, or by any HS&E discipline. #### 3. PROCEDURE FOR DEVELOPING AN OSA - 3.1 Responsible User/Supervisor and HS&E Area Engineer: Determine the need for, and scope of each OSA. If an OSA is to be written, discuss details and depth that the OSA must contain. - 3.2 <u>Responsible User/Supervisor:</u> Write the OSA using Title and Approval Authority Sheet [Appendix B], and Procedure Sheet [Appendix C] of this Procedure. The OSA should identify: basic operations, potential hazards, and hazard controls. All required Failure Mode & Effects Analyses [FMEAs] shall be incorporated as an addendum to the OSA. Send completed OSA to the appropriate HS&E Area Engineer for review. - 3.3 <u>HS&E Area Engineer:</u> Review the OSA, log in, and assign OSA number. Send copies of the OSA, with Comment Review Sheet [Appendix D] to the Area Safety Team members, along with information indicating the time and place of the HS&E review meeting. Schedule a meeting approximately 5 working days from the submittal of the OSA to the Area Safety Team. - 3.4 HS&E Area Engineer and Area Safety Team: Review the OSA and the operation, with the Responsible User/Supervisor at the SITE OF THE OPERATION. Consider all hazards and ensure the hazard controls are adequate. Recommend the OSA be reviewed by a technical specialist, if appropriate, and attend the HS&E review. ALL comments must be signed and will remain as a permanent part of the OSA. - 3.5 Responsible User/Supervisor: - 3.5.1 Re-write the OSA incorporating all comments from the HS&E review. - 3.5.2 Return the OSA to the HS&E Area Engineer, along with all comments for review. - 3.6 <u>HS&E Area Engineer:</u> Review the OSA and ensure all comments are present. **NOTE:** If a problem arises that cannot be resolved, the OSA will be routed to the Director of Health, Safety and Environment for final resolution. Write a cover letter to the Approval Authority highlighting areas of the OSA requiring maximum attention during implementation and use of the OSA. Send the cover letter and OSA with all comments to the Director, HS&E [alternate, Manager, HSE Area Management] for review and concurrence. - 3.7 Provide the OSA title, number, Responsible User, method of information dissemination, and Approval Authority to the HSE Area Management Office. - 3.8 <u>Director of Health, Safety and Environment:</u> Review, concur, and sign the original Title and Approval Sheet. Forward OSA package to the appropriate Approval Authority. - 3.9 Approval Authority: When the approval is granted, sign original Title and Approval Authority Sheet [Appendix B] and return to the appropriate HS&E Area Engineer. If the OSA is NOT approved, return it to the Responsible User/Supervisor for necessary changes and notify the HS&E Area Engineer that the OSA has been returned to the Responsible User/Supervisor for changes. - 3.10 Responsible User/Supervisor and HS&E Area Engineer: If the OSA is not approved, make the necessary changes and return the OSA to the HS&E Area Engineer for review. The HS&E Area Engineer will forward the OSA to the Area Safety Team, which will concur with the change[s] and re-submit the OSA to the Approval Authority or, if not in agreement, the OSA will be scheduled for
further discussion. If the OSA is approved, the OSA, all original comment sheets, and the original Title and Approval Sheet will be returned to HSE Area Management, for distribution to the Approval Authority, Responsible User/Supervisor, HS&E Area Engineer, and permanent repository. HSE 2.03 Page 5 of 11 Jan. 28, 1988 Replaces: 03/31/87 - 3.11 <u>Responsible User:</u> The Responsible User [designated by the Approval Authority and the supervisor], will be responsible for disseminating the hazards identification and control measures contained in the OSA to the involved employees. The following requirements are mandatory: - ** Discuss OSA at DOCUMENTED safety meetings at least annually, or whenever changes occur, if more frequent. - ** Have employees read and acknowledge by signing a sheet attached to the inside front cover of the OSA. #### 4. SUBSEQUENT REVIEW OF APPROVED OSAs [AT LEAST ANNUALLY] - 4.1 <u>HSE Area Management:</u> One month in advance, HSE Area Management, will notify the Area Engineer and the Responsible User that the OSA is due for review. - 4.2 <u>Responsible User/Supervisor:</u> Review operation and the OSA with the HS&E Area Engineer. - 4.3 <u>HS&E Area Engineer:</u> If no significant changes have occurred, the HS&E Area Engineer will notify HSE Area Management, in writing, that the review has been completed. HSE Area Management will document and notify the Approval Authority and Responsible User that the review has been successfully completed. - 4.4 During the annual review, if the User decides the OSA is acceptable for continued use, he/she will send a letter to the HS&E Area Engineer, which verifies this decision. #### 5. OPERATIONAL CHANGE CONTROL - 5.1 <u>Responsible User and HS&E Area Engineer:</u> Minor changes to the OSA prior to subsequent reviews, may be approved by the Responsible User-Supervisor and the HS&E Area Engineer. - 5.2 <u>HS&E Area Engineer and Area Safety Team:</u> - 5.2.1 If a significant change has been identified by the Responsible User/Supervisor or the HS&E Area Engineer since the last review, review the OSA following the procedure outlined in Section 3.6. - 5.2.2 If the change requires the operation to be shutdown, the HS&E Area Engineer will notify the Responsible User/Supervisor. HSE 2.03 Page 6 of 11 Jan. 28, 1988 Replaces: 03/31/87 #### 5.2.3 Examples of Significant Change Are: ** Any change in operation altering the flow of process materials. ** Any addition, replacement, modification, or relocation of equipment. ** Any deviation in construction material[s] from the original, such as stainless steel to PVC. ** Any change in glovebox [e.g., sumps in floor, fire doors that block access to criticality drain]. ** Any chemical changes or quantity changes in a process. ** Any relocation of a process or operation within a room building, or from building to building. ** Any change in a ventilation system. ** Any change in quantity and/or form of radioactive materials in a process or operation. ** Any change in temperature or pressure parameters of equipment. ** Any change in personnel protective equipment requirements, such as shielding, respiratory protection, eye/face protection, hand protection, etc. ** Any changes in construction materials used to install a wall or relocation of a wall or installation of new walls, such as dividing a room into smaller sections. The above examples are to be used as a guide and may not cover all areas of concern. HS&E can deem a change significant based on their expertise. Therefore, judgment must be used any time that a change occurs to ensure that appropriate reviews are made. 5.3 <u>HS&E Area Engineer:</u> Review the OSA with the Responsible User/Supervisor to ensure that noted changes are reviewed and incorporated into the OSA as necessary. If the operation was shutdown, appropriate changes must be incorporated into the OSA and approved by the Approval Authority before the operation is permitted to proceed. Notify HSE Area Management of update. #### 6. AUDITS 6.1 The Area Safety Team will audit operations for compliance with OSA requirements during the annual Multi-Disciplinary Audit. #### 7. DEACTIVATION OF AN OSA 7.1 <u>Responsible User/Supervisor:</u> Notify the HS&E Area Engineer when an operation covered by an OSA has been deactivated. HSE 2.03 Page 7 of 11 Jan. 28, 1988 Replaces: 03/31/87 7.2 HS&E Area Engineer: The HS&E Area Engineer will, in writing, notify HSE Area Management when an OSA has been deactivated. At that time, the original OSA will be turned over to the HSE Area Engineer for retention or disposal. # 8. RE-ACTIVATION OF AN OSA 8.1 Responsible User/Supervisor: Notify the HS&E Area Engineer that the OSA should be re-activated. HSE 2.03 Page 8 of 11 Jan. 28, 1988 Replaces: 03/31/87 #### APPENDIX A #### **APPROVAL AUTHORITIES** DIRECTOR SUPPORT OPERATIONS DIRECTOR PRODUCTION OPERATIONS DIRECTOR QUALITY ENGINEERING & CONTROL DIRECTOR FINANCE & RESOURCE MANAGEMENT DIRECTOR PLUTONIUM OPERATIONS DIRECTOR HEALTH, SAFETY & ENVIRONMENT DIRECTOR PLANT SECURITY DIRECTOR SAFEGUARDS & MATERIALS MANAGEMENT HSE 2.03 Page 9 of 11 Jan. 28, 1988 Replaces: 03/31/87 # APPENDIX B # **OPERATIONAL SAFETY ANALYSIS [OSA]** | OSA NUMBER | _ | | |--------------------------------------|---|--| | TITLE | | | | OPERATION | | | | include a statemen worked; statement | t of principle operat
of principle hazard[s
of operation, buildi | he OSA. The description should ion; type[s] of material to be]; sequence of the operation, ng, room; and any special con- | | RESPONSIBILITY | | | | [Name] | [Position] | [Organization] | | sure the operation | n is carried out in ac | s his/her responsibility to encordance with the OSA and that familiar with the document. | | CHANGES | | | | through the HS&E / | e made in this OSA wit
Area Engineer. He/she
provals are necessary. | hout coordinating the change will determine if additional | | CONCURRENCE | | | | Director, HS&E [S | ignature] | Concurrence Date | | APPROVAL AUTHORITY | <u>(</u> | | | [Ту | pe Name and Title of A | Approval Authority] | | is the final Appro | oval Authority for th | is OSA. | | Approval Authorit | y [Signature] | Approval Date | HSE 2.03 Page 10 of 11 Jan. 28, 1988 Replaces: 03/31/87 # APPENDIX C OPERATIONAL SAFETY ANALYSIS [OSA] | OSA # | | |---------------------------------|--| | TITLE | | | RESPONSIBLE ORGANIZATION | | | General Hazard Review & Control | | Basic Job Steps Potential Hazard Hazard Control HSE 2.03 Page 11 of 11 Jan. 28, 1988 Replaces: 03/31/87 # APPENDIX D H&SE - OPERATIONAL SAFETY ANALYSIS [OSA] REVIEW SHEET | NAME | DISCIPLINE | BLDG. | EXT. | PAGE | | |---------------------------------------|---|---------------------|---------|----------------|----------| | [Team Leader] | HSE AREA ENGINEER
Criticality Engr.
Environ. Mgmt. | | | | | | | Health Physics | | | | | | | Industrial Hygiene
I & S S E | | | | | | | Safety Analysis
Fire Department | • | | | | | OSA # | OSA TITLE | | | | | | AUTHOR | | | EX | Г. | | | Review the attac
changes, addition | thed copy of the subjons, or your approval | ect OSA
in the | and inc | dicate noelow. | required | | NO meeting | j is scheduled. Retu | rn comme | nts by | · | | | | <pre>[eam Review meeting I oldg/room] ATTEND AND SUBMIT YOU</pre> | to dis | cuss t | he OSA a | | | ************ | ************************************** | K KEUUII
******* | (FWFN12 | ***** | ***** | | | C O M M
[Use Reverse | | ssary] | - | SIGNATURE | | ATE. | | | |